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Abstract: This material is hopefully useful for an understanding of (the
first steps of) the “geometry” work of F. Otto from 2001, [1]. We give
the easiest nontrivial example for a gradient flow on a manifold.

1. Gradient flow in a Hilbert space

When X is a Hilbert space and E : X → R is differentiable, then the differential
in a point u ∈ X is a map DE(u) : X → R. It is defined as

(1.1) DE(u)〈v〉 :=
d

dt

∣∣∣∣
t=0

E(u+ t v)

for every v ∈ X. With the scalar product on X, we define the gradient ∇E(u) ∈ X
by demanding

(1.2) DE(u)〈v〉 !
= 〈∇E(u), v〉X ∀v ∈ X .

Let us investigate a solution u : [0, T ] 3 t 7→ u(t) ∈ X, of the gradient flow
equation

(1.3) ∂tu = −∇E(u) ,

which is meant to be satisfied for every t ∈ (0, T ). This equation means that we are
“walking in the direction of the steepest decent”. We calculate for the evolution of
the energy, omitting the argument t,

(1.4)
d

dt
[E(u)] = DE(u)〈∂tu〉 = 〈∇E(u), ∂tu〉X < 0 .

Moreover, the decay of energy is quantified. The right hand side can be written in
any of these forms:

(1.5) −‖∇E(u)‖2 = −‖∂tu‖2 = −‖∂tu‖ ‖∇E(u)‖ = −1

2
‖∂tu‖2 − 1

2
‖∇E(u)‖2 .

The subsequent three examples are formal in the sense that (in two of the exam-
ples) the energy is not differentiable on the whole space X. Regarding Ω ⊂ Rn, we
always think of a bounded Lipschitz domain.

1.1. The L2-gradient flow of the L2-energy. We consider X = L2(Ω) and the
energy E : X → R, defined by E(u) = 1

2

∫
Ω
|u|2. Then

(1.6) DE(u)〈v〉 =

∫
Ω

u · v , ∇E(u) = u .

The corresponding gradient flow is therefore

(1.7) ∂tu = −u .
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1.2. The L2-gradient flow of the H1-energy. We consider X = L2(Ω) and the
energy E : X → R, defined by E(u) = 1

2

∫
Ω
|∇u|2. Then

(1.8) DE(u)〈v〉 =

∫
Ω

∇u · ∇v , ∇E(u) = −∆u .

The corresponding gradient flow is therefore

(1.9) ∂tu = ∆u .

1.3. The H−1-gradient flow of the L2-energy. We consider X = H−1(Ω) and
the energy E : X → R, defined by E(u) = 1

2

∫
Ω
|u|2.

In order to prepare the analysis, we have to choose a scalar product on H−1(Ω) =
(H1

0 (Ω))′. There is a natural choice when we use the scalar product 〈u, v〉H1 :=∫
Ω
∇u · ∇v on H1

0 (Ω). Every element λ ∈ X = H−1(Ω) can be represented by
Uλ ∈ H1

0 (Ω) via λ(ϕ) = 〈Uλ, ϕ〉H1 for all ϕ ∈ H1
0 (Ω). By the choice of the scalar

product in H1
0 (Ω), the objects λ and Uλ are related by equation −∆Uλ = λ in the

sense of distributions. The natural scalar product on X = H−1(Ω) is therefore, for
λ, µ ∈ X, given by

(1.10) 〈λ, µ〉X := 〈Uλ, Uµ〉H1 = λ(Uµ) =

∫
Ω

∇Uλ · ∇Uµ =

∫
Ω

Uλ µ ,

where the last expression can only be written in this form when µ is an L2(Ω)-
function.

The differential of E is (formally, when u and v are L2(Ω)):

(1.11) DE(u)〈v〉 =

∫
Ω

u · v .

We are now in the position to calculate the gradient g = ∇E(u). For arbitrary
v ∈ X (in the calculation we actually assume v ∈ L2(Ω)):

(1.12)

∫
Ω

u · v = DE(u)〈v〉 !
= 〈∇E(u), v〉X = 〈g, v〉X =

∫
Ω

(−∆)−1(g) v .

Since v was arbitrary, we find u = (−∆)−1(g) or, equivalently, g = −∆u.
The gradient flow corresponding to X and E is therefore

(1.13) ∂tu = ∆u .

Even though we have chosen another energy and another underlying space, we have
the same equation as in (1.9).

2. Elementary differential geometry

The aim of this section is to support readers that want to understand [1]. Because
of this aim, all the notation is as in [1]. There is a minimal exception: We write
DE|ρ〈s〉 instead of diffE|ρ.s.

2.1. The simplest nontrivial gradient flow on a manifold. Guiding question:
Given a manifoldM (the elements are denoted by ρ) and given a function E :M→
R, we are interested in the gradient flow equation

(2.1) ∂tρ = −∇E(ρ) .

More precisely: We seek a map ρ : [0, T ] → M such that (2.1) holds for almost
every t.

We must ask: What exactly is meant with (2.1)? In particular: What kind of
object is the gradient? We recall here some differential geometry in order to clearify
these questions. With the example of M = S1 ⊂ R2, we illustrate the concepts.
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Abstract manifold setting Our example

Hilbert space H H = R2

manifold M⊂ H Our choice: M := S1

elements ρ ∈M S1 = {ρ ∈ R2 | ρ2
1 + ρ2

2 = 1}
tangent space TρM TρS

1 = {s ∈ R2 | s · ρ = 0}
equivalent curves γ with γ(0) = ρ subset of vectors γ′(0) ∈ H

metric tensor g = gρ(., .) gρ(s1, s2) = 〈s1, s2〉H = s1 · s2

Riemannian manifold: part of submanifold of a Hilbert space:
the definition of M metric induced by H

energy functional E :M→ R Our choice: E(ρ) := ρ2 (height)
differential DE|ρ : TρM→ R DE|ρ〈s〉 = d

dt
(E ◦ γ)(t0)

γ(t0) = ρ, γ′(t0) = s

Table 1. Embedded manifold and our example

We consider the example that is outlined in the right part of Table 1. Let us
calculate the differential of E in the point ρ = (cos(t0), sin(t0)). An arbitrary tan-
gential vector in ρ is of the form µ (− sin(t0), cos(t0)). It is sufficient to evaluate
DE|ρ〈s〉 for s = (− sin(t0), cos(t0)). As a curve through ρ with derivative s we
choose γ(t) := (cos(t), sin(t)). We find

DE|ρ〈s〉 =
d

dt
(E ◦ γ)(t)|t=t0 =

d

dt
sin(t)|t=t0 = cos(t0) .

The action on an arbitrary tangential vector is therefore, for ρ = (cos(t0), sin(t0)),

(2.2) DE|ρ〈µ (− sin(t0), cos(t0))〉 = µ cos(t0) .

With this calculation, DE is determined.

Definition 2.1 (Gradient). The vector ∇E(ρ) is the element of TρM such that

(2.3) gρ(∇E(ρ), s) = DE|ρ〈s〉
holds for every s ∈ TρM.

We continue our example, we now consider a point ρ = (cos(t), sin(t)). The
gradient ∇E(ρ) is a tangent vector, therefore, for some λ ∈ R, there must hold
∇E(ρ) = λ (− sin(t), cos(t)). Test vectors are also tangential vectors, we write them
as s = µ (− sin(t), cos(t)) ∈ TρM. The gradient is defined by

(2.4) λµ = gρ(∇E(ρ), s)
!

= DE|ρ〈s〉 = µ cos(t) .

Since this should hold for every µ ∈ R, we find λ = cos(t). We have thus determined
the gradient ∇E(ρ):

(2.5) ∇E((cos(t), sin(t))) = cos(t) (− sin(t), cos(t)) .

This result coincides with intuition — at least when the intuition is well trained:
The gradient is obtained from the gradient of E in the ambient space (which is e2),
by a projection onto the tangential space.

Without loss of generality, we can write the solution ρ = ρ(t) of (2.1) as ρ(t) =
(cos(ψ(t)), sin(ψ(t)). This is true since every point on the manifold can be written
as (cos(ψ), sin(ψ) for some ψ ∈ R. We note in passing: ψ is called the lifting of ρ
(Deutsch: “Liftung”).
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With this notation, the gradient flow equation (2.1) reads

(2.6) ψ′(t) (− sin(ψ(t), cos(ψ(t))) = − cos(ψ(t)) (− sin(ψ(t)), cos(ψ(t))) .

The equation for ψ is therefore

(2.7) ψ′(t) = − cos(ψ(t)) .

2.2. A manifold that is given by a submersion. In [1], the relevant manifold
for the gradient flow is not given as a submanifold of a Hilbert-space or Banach-
space. Instead, the Riemannian manifold is “parametrized” with a submersion. We
want to illustrate also this concept with a simple example. We use a flat manifold
M∗ and regardM as the image ofM∗ under some submersion Φ. We note that, in
this outline, it is not relevant that M∗ is flat. Our interest here is not the gradient
flow, but the “right” Riemannian metric of M.

A submersion is a differentiable map whose differential is everywhere surjective
(while, for an immersion, the differential is everywhere injective).

Manifold defined by a submersion Our example

flat manifold M∗ M∗ = R3

elements Φ ∈M∗ Φ = (Φ1,Φ2,Φ3)
submersion Π :M∗ →M Π : Φ 7→ (cos(Φ1), sin(Φ1))
tangent space TΦM∗ TΦR3 = R3

metric tensor g∗Φ(v1, v2) g∗Φ(v1, v2) = 〈v1, v2〉R3

tangential TΦΠ : TΦM∗ → TρM TΦΠ〈(λ1, λ2, λ3)〉 = λ1 (− sin(Φ1), cos(Φ1))
where ρ = Π(Φ) where ρ = (cos(Φ1), sin(Φ1)

kernel kerTΦΠ kerTΦΠ = {0} × R2

Table 2. Abstract submersion and the example. Our example con-
tinues, we still consider M = S1 ⊂ R2.

Definition 2.2 (Isometric submersion). The submersion is an isometric submersion
if the following relation holds between g∗ and g (base points are connected via ρ =
Π(Φ)):

(2.8) gρ(s, s) = inf {g∗Φ(v, v) |TΦΠ〈v〉 = s} .

Let us check this property in our example: Vectors v ∈ TΦM∗ are vectors v =
(v1, v2, v3) ∈ R3. Vectors s ∈ TρM are of the form s = λ (− sin(Φ1), cos(Φ1)).
The condition TΦΠ〈v〉 = s reads v1 (− sin(Φ1), cos(Φ1)) = λ (− sin(Φ1), cos(Φ1)),
which is equivalent to v1 = λ. Relation (2.8) therefore demands for every s =
λ (− sin(Φ1), cos(Φ1)):

(2.9) λ2 = gρ(s, s)
!

= inf {g∗Φ(v, v) |TΦΠ〈v〉 = s} = inf
{
|v|2R3

∣∣ v1 = λ
}

= λ2 .

We see that equality holds for all λ ∈ R. Therefore, in our example, the map Π is
indeed an isometric submersion.
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