Dispersion of waves in heterogeneous media

T. Dohnal, A. Lamacz, Ben Schweizer

TU Dortmund

Berlin, December 2015

Physical origins of the wave equation

Acoustics

Pressure in an ideal gas

$$
\begin{array}{r}
\rho_{0} \partial_{t} v+p_{0}^{\prime}\left(\rho_{0}\right) \nabla \rho=0 \\
\partial_{t} \rho+\rho_{0} \nabla \cdot v=0
\end{array}
$$

Light

Maxwell's equations

$$
\begin{aligned}
\partial_{t}(\mu H) & =-\operatorname{curl} E \\
\partial_{t}(\varepsilon E) & =\operatorname{curl} H
\end{aligned}
$$

Elastic media

Equations of elasticity

$$
\begin{aligned}
\rho \partial_{t}^{2} u+\nabla \cdot \sigma & =0 \\
\sigma & =A \nabla^{s} u
\end{aligned}
$$

In simplified settings, each model leads to the
with coefficients $\rho=\rho(x)$ and $a=a(x)$

Assumptions:

Polarised H - and E-field, $H=u\left(x_{1}, x_{2}\right) e_{3}$

- Constant coefficients
- Uniaxial deformation $u=u\left(x_{1}, x_{2}\right) e_{3}$

Heterogeneous media

Let $a: \mathbb{R}^{n} \rightarrow(\delta, \infty)$ be 1-periodic, set $a_{\varepsilon}(x):=a(x / \varepsilon)$

$$
\partial_{t}^{2} u^{\varepsilon}=\nabla \cdot\left(a(x / \varepsilon) \nabla u^{\varepsilon}(x)\right)
$$

Heterogeneous media

Let $a: \mathbb{R}^{n} \rightarrow(\delta, \infty)$ be 1-periodic, set

$$
a_{\varepsilon}(x):=a(x / \varepsilon)
$$

$$
\partial_{t}^{2} u^{\varepsilon}=\nabla \cdot\left(a(x / \varepsilon) \nabla u^{\varepsilon}(x)\right)
$$

Classical homogenization): $u^{\varepsilon} \approx u$, where u solves

$$
\partial_{t}^{2} u(x, t)=\left(c^{*}\right)^{2} \partial_{x}^{2} u(x, t), \quad u(x, 0)=f(x), \quad \partial_{t} u(x, 0)=0
$$

Exact solution: $u(x, t)=\frac{1}{2} f\left(x-c^{*} t\right)+\frac{1}{2} f\left(x+c^{*} t\right)$

Heterogeneous media

Let $a: \mathbb{R}^{n} \rightarrow(\delta, \infty)$ be 1-periodic, set

$$
a_{\varepsilon}(x):=a(x / \varepsilon)
$$

$$
\partial_{t}^{2} u^{\varepsilon}=\nabla \cdot\left(a(x / \varepsilon) \nabla u^{\varepsilon}(x)\right)
$$

Classical homogenization): $u^{\varepsilon} \approx u$, where u solves

$$
\partial_{t}^{2} u(x, t)=\left(c^{*}\right)^{2} \partial_{x}^{2} u(x, t), \quad u(x, 0)=f(x), \quad \partial_{t} u(x, 0)=0
$$

Exact solution: $u(x, t)=\frac{1}{2} f\left(x-c^{*} t\right)+\frac{1}{2} f\left(x+c^{*} t\right)$

Observation (Experiments and Numerics):

Heterogeneous media

Let $a: \mathbb{R}^{n} \rightarrow(\delta, \infty)$ be 1-periodic, set

$$
a_{\varepsilon}(x):=a(x / \varepsilon)
$$

$$
\partial_{t}^{2} u^{\varepsilon}=\nabla \cdot\left(a(x / \varepsilon) \nabla u^{\varepsilon}(x)\right)
$$

Classical homogenization): $u^{\varepsilon} \approx u$, where u solves

$$
\partial_{t}^{2} u(x, t)=\left(c^{*}\right)^{2} \partial_{x}^{2} u(x, t), \quad u(x, 0)=f(x), \quad \partial_{t} u(x, 0)=0
$$

Exact solution: $u(x, t)=\frac{1}{2} f\left(x-c^{*} t\right)+\frac{1}{2} f\left(x+c^{*} t\right)$

Observation (Experiments and Numerics):

Numerical solution for $\varepsilon=1 / 20$

Dispersion

Ansatz: $u(x, t)=U(x) e^{-\mathrm{i} \omega t}$ with $U(x)=e^{\mathrm{i} k \cdot x}$

$$
\partial_{t}^{2} u=c^{2} \Delta u \Longleftrightarrow \omega^{2}=c^{2}|k|^{2}
$$

Dispersion relation:

$$
\omega(k)= \pm c|k|
$$

Solutions: (here: $x \in \mathbb{R}$)

$$
u(x, t)=\int_{\mathbb{R}} \hat{f}_{ \pm}(k) e^{\mathrm{i} k x \pm \mathrm{i}|k| t} d k
$$

- Choosing $\hat{f}_{ \pm}$appropriately, we can satisfy initial conditions
- Observe: solutions depend only on $x+c t$ and on $x-c t$

Dispersion

... describes the effect that harmonic waves travel at different speeds. This occurs iff $k \mapsto \omega(k)$ is not 1-homogeneous.

The homogenization problem

Waves propagate in a periodic medium, periodicity length $\varepsilon>0$.

Variables

displacement field $\quad u^{\varepsilon}: \mathbb{R}^{n} \times\left(0, T_{\varepsilon}\right) \rightarrow \mathbb{R}$ elastic modulus $\quad a_{Y}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ initial displacement $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$

Heterogeneous Wave Equation

$$
\begin{aligned}
\partial_{t}^{2} u^{\varepsilon}(x, t) & =\nabla \cdot\left(a_{Y}\left(\frac{x}{\varepsilon}\right) \nabla u^{\varepsilon}(x, t)\right) \\
u^{\varepsilon}(x, 0) & =f(x), \quad \partial_{t} u^{\varepsilon}(x, 0)=0
\end{aligned}
$$

- $a_{Y}(\cdot) \in C^{\infty}\left(\mathbb{R}^{n}, \mathbb{R}^{n \times n}\right)$ periodic for the cube $Y:=(-\pi, \pi)^{n}$, i.e. $a_{Y}(y)=a_{Y}\left(y+2 \pi e_{i}\right)$
- $a_{Y}(y)$ symmetric and positive definite matrix:

$$
\begin{aligned}
& a_{Y}(y)_{i j}=a_{Y}(y)_{j i} \text { and } \\
& \sum_{i, j=1}^{n}\left(a_{Y}(y)\right)_{i j} \xi_{i} \xi_{j} \geq \gamma|\xi|^{2}
\end{aligned}
$$

- f smooth

Question: What is the effective behavior of u^{ε} as $\varepsilon \rightarrow 0$?

Main result: $T_{\varepsilon}=T \varepsilon^{-2}$

We derive an effective equation for large times!

Weakly dispersive effective equation

$$
\begin{gathered}
\partial_{t}^{2} w^{\varepsilon}=A D^{2} w^{\varepsilon}+\varepsilon^{2} E D^{2} \partial_{t}^{2} w^{\varepsilon}-\varepsilon^{2} F D^{4} w^{\varepsilon} \\
w^{\varepsilon}(x, 0)=f(x), \quad \partial_{t} w^{\varepsilon}(x, 0)=0
\end{gathered}
$$

Constant coefficients:

$$
\begin{aligned}
& A, E \in \mathbb{R}^{n \times n} \text { and } F \in \mathbb{R}^{n \times n \times n \times n} \\
& A D^{2}:=\sum A_{i j} \partial_{i} \partial_{j} \\
& E D^{2}:=\sum E_{i j} \partial_{i} \partial_{j} \\
& F D^{4}:=\sum F_{i j m l} \partial_{i} \partial_{j} \partial_{m} \partial_{n}
\end{aligned}
$$

Main result: $T_{\varepsilon}=T \varepsilon^{-2}$

We derive an effective equation for large times!

Weakly dispersive effective equation

$$
\begin{gathered}
\partial_{t}^{2} w^{\varepsilon}=A D^{2} w^{\varepsilon}+\varepsilon^{2} E D^{2} \partial_{t}^{2} w^{\varepsilon}-\varepsilon^{2} F D^{4} w^{\varepsilon} \\
w^{\varepsilon}(x, 0)=f(x), \quad \partial_{t} w^{\varepsilon}(x, 0)=0
\end{gathered}
$$

Constant coefficients:

$$
\begin{aligned}
& A, E \in \mathbb{R}^{n \times n} \text { and } F \in \mathbb{R}^{n \times n \times n \times n} \\
& A D^{2}:=\sum A_{i j} \partial_{i} \partial_{j}, \\
& E D^{2}:=\sum E_{i j} \partial_{i} \partial_{j}, \\
& F D^{4}:=\sum F_{i j m l} \partial_{i} \partial_{j} \partial_{m} \partial_{n}
\end{aligned}
$$

Theorem (Dohnal, Lamacz, B.S., 2014 and 2015)

There exist $A, E \in \mathbb{R}^{n \times n}$ and $F \in \mathbb{R}^{n \times n \times n \times n}$, computable from a_{Y}, s.t.
(1) the weakly dispersive effective equation is well-posed
(2) there holds the error estimate

$$
\sup _{t \in\left[0, T \varepsilon^{-2}\right]}\left\|u^{\varepsilon}(\cdot, t)-w^{\varepsilon}(\cdot, t)\right\|_{L^{2}\left(\mathbb{R}^{n}\right)+L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C_{0} \varepsilon .
$$

Norm: $\|u\|_{X+Y}:=\inf \left\{\left\|u_{1}\right\|_{X}+\left\|u_{2}\right\|_{Y}: u=u_{1}+u_{2}\right\}$

Bloch wave analysis: Basics

1.) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is written with a Fourier transform:

$$
f(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{\mathrm{i} \xi \cdot x} d \xi
$$

Bloch wave analysis: Basics

1.) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is written with a Fourier transform:

$$
f(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{\mathrm{i} \xi \cdot x} d \xi
$$

2.) ξ is written as $\xi=k+\Theta$ with $k \in \mathbb{Z}^{n}$ and $\Theta \in Z:=\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$

$$
f(x)=\int_{Z} \underbrace{\sum_{k} \hat{f}(k+\Theta) e^{\mathrm{i} k \cdot x}}_{=: F} e^{\mathrm{i} \Theta \cdot x} d \Theta
$$

Bloch wave analysis: Basics

1.) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is written with a Fourier transform:

$$
f(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{\mathrm{i} \xi \cdot x} d \xi
$$

2.) ξ is written as $\xi=k+\Theta$ with $k \in \mathbb{Z}^{n}$ and $\Theta \in Z:=\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$

$$
f(x)=\int_{Z} \underbrace{\sum_{k} \hat{f}(k+\Theta) e^{\mathrm{i} k \cdot x}}_{=: F} e^{\mathrm{i} \Theta \cdot x} d \Theta
$$

3.) $F=F(x ; \Theta)$ is expanded in periodic eigenfunctions $\Phi_{m}(x ; \Theta)$:

$$
F(x ; \Theta)=\sum_{m \in \mathbb{N}} \alpha_{m}(\Theta) \Phi_{m}(x ; \Theta)
$$

$$
\begin{aligned}
& \Psi_{m}(x ; \Theta)=\Phi_{m}(x ; \Theta) e^{\mathrm{i} \Theta \cdot x} \text { solves } \\
& -\nabla \cdot\left(a(x) \nabla \Psi_{m}(x)\right)=\mu_{m}(\Theta) \Psi_{m}(x)
\end{aligned}
$$

Bloch wave analysis: Basics

1.) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is written with a Fourier transform:

$$
f(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{\mathrm{i} \xi \cdot x} d \xi
$$

2.) ξ is written as $\xi=k+\Theta$ with $k \in \mathbb{Z}^{n}$ and $\Theta \in Z:=\left[-\frac{1}{2}, \frac{1}{2}\right)^{n}$

$$
f(x)=\int_{Z} \underbrace{\sum_{k} \hat{f}(k+\Theta) e^{\mathrm{i} k \cdot x}}_{=: F} e^{\mathrm{i} \Theta \cdot x} d \Theta
$$

3.) $F=F(x ; \Theta)$ is expanded in periodic eigenfunctions $\Phi_{m}(x ; \Theta)$:

$$
F(x ; \Theta)=\sum_{m \in \mathbb{N}} \alpha_{m}(\Theta) \Phi_{m}(x ; \Theta)
$$

$$
\begin{aligned}
& \Psi_{m}(x ; \Theta)=\Phi_{m}(x ; \Theta) e^{\mathrm{i} \Theta \cdot x} \text { solves } \\
& -\nabla \cdot\left(a(x) \nabla \Psi_{m}(x)\right)=\mu_{m}(\Theta) \Psi_{m}(x)
\end{aligned}
$$

Result: The operator $L=-\nabla \cdot(a(.) \nabla)$ acts as a multiplier:

$$
L f=L \int_{Z} \sum_{m \in \mathbb{N}} \alpha_{m}(\Theta) \Phi_{m}(x ; \Theta) e^{\mathrm{i} \Theta \cdot x} d \Theta=\int_{Z} \sum_{m \in \mathbb{N}} \alpha_{m} \mu_{m} \Phi_{m}(x) e^{\mathrm{i} \Theta \cdot x} d \Theta
$$

Bloch analysis I

Bloch-transform f with basis functions w_{m}^{ε} and coefficients $\hat{f}_{m}^{\varepsilon}(k)$
Step 1: The solution u^{ε} of $\partial_{t}^{2} u^{\varepsilon}=-L_{\varepsilon} u^{\varepsilon}$ can be represented as

$$
u^{\varepsilon}(x, t)=\sum_{m=0}^{\infty} \int_{Z / \varepsilon} \hat{f}_{m}^{\varepsilon}(k) w_{m}^{\varepsilon}(x, k) \operatorname{Re}\left(e^{\mathrm{it} \sqrt{\mu_{m}^{\varepsilon}(k)}}\right) d k
$$

Bloch analysis I

Bloch-transform f with basis functions w_{m}^{ε} and coefficients $\hat{f}_{m}^{\varepsilon}(k)$
Step 1: The solution u^{ε} of $\partial_{t}^{2} u^{\varepsilon}=-L_{\varepsilon} u^{\varepsilon}$ can be represented as

$$
u^{\varepsilon}(x, t)=\sum_{m=0}^{\infty} \int_{Z / \varepsilon} \hat{f}_{m}^{\varepsilon}(k) w_{m}^{\varepsilon}(x, k) \operatorname{Re}\left(e^{\mathrm{it} \sqrt{\mu_{m}^{\varepsilon}(k)}}\right) d k
$$

Step 2: Contributions of $m>0$ can be neglected:

$$
\sup _{t \in(0, \infty)}\left\|\sum_{m=1}^{\infty} \int_{Z / \varepsilon} \hat{f}_{m}^{\varepsilon}(k) w_{m}^{\varepsilon}(x, k) \operatorname{Re}\left(e^{\mathrm{i} t \sqrt{\mu_{m}^{\varepsilon}(k)}}\right) d k\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C_{0} \varepsilon
$$

Bloch analysis I

Bloch-transform f with basis functions w_{m}^{ε} and coefficients $\hat{f}_{m}^{\varepsilon}(k)$
Step 1: The solution u^{ε} of $\partial_{t}^{2} u^{\varepsilon}=-L_{\varepsilon} u^{\varepsilon}$ can be represented as

$$
u^{\varepsilon}(x, t)=\sum_{m=0}^{\infty} \int_{Z / \varepsilon} \hat{f}_{m}^{\varepsilon}(k) w_{m}^{\varepsilon}(x, k) \operatorname{Re}\left(e^{\mathrm{it} \sqrt{\mu_{m}^{\varepsilon}(k)}}\right) d k
$$

Step 2: Contributions of $m>0$ can be neglected:

$$
\sup _{t \in(0, \infty)}\left\|\sum_{m=1}^{\infty} \int_{Z / \varepsilon} \hat{f}_{m}^{\varepsilon}(k) w_{m}^{\varepsilon}(x, k) \operatorname{Re}\left(e^{\mathrm{it} \sqrt{\mu_{m}^{\varepsilon}(k)}}\right) d k\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C_{0} \varepsilon
$$

Step 3: Let f be

$$
f(x)=(2 \pi)^{-n / 2} \int_{\mathbb{R}^{n}} F_{0}(k) e^{\mathrm{i} k \cdot x} d k
$$

with $F_{0}: \mathbb{R}^{n} \rightarrow \mathbb{C}$ supported on $K \subset \subset \mathbb{R}^{n}$. Then

$$
\left\|\hat{f}_{0}^{\varepsilon}-F_{0}\right\|_{L^{1}(Z / \varepsilon)} \leq C_{0} \varepsilon
$$

Bloch analysis II

Step 4: Taylor expansion of the rescaled eigenvalue
$\mu_{0}^{\varepsilon}(k)=\frac{1}{\varepsilon^{2}} \mu_{0}(\varepsilon k)=\sum \sum A_{l m} k_{l} k_{m}+\varepsilon^{2} \sum C_{l m n q} k_{l} k_{m} k_{n} k_{q}+O\left(\varepsilon^{4}\right)$
For the square root we use $\sqrt{a+c}=\sqrt{a}+\frac{1}{2 \sqrt{a}} c+O\left(|c|^{2}\right)$

Bloch analysis II

Step 4: Taylor expansion of the rescaled eigenvalue

$$
\mu_{0}^{\varepsilon}(k)=\frac{1}{\varepsilon^{2}} \mu_{0}(\varepsilon k)=\sum \sum A_{l m} k_{l} k_{m}+\varepsilon^{2} \sum C_{l m n q} k_{l} k_{m} k_{n} k_{q}+O\left(\varepsilon^{4}\right)
$$

For the square root we use $\sqrt{a+c}=\sqrt{a}+\frac{1}{2 \sqrt{a}} c+O\left(|c|^{2}\right)$

Proposition (Bloch-wave approximation of u^{ε})

$$
\begin{aligned}
& v^{\varepsilon}(x, t):=(2 \pi)^{-n / 2} \frac{1}{2} \sum_{ \pm} \int_{K} F_{0}(k) e^{\mathrm{i} k \cdot x} \exp \left(\pm \mathrm{i} t \sqrt{\sum A_{l m} k_{l} k_{m}}\right) \\
& \times \exp \left(\pm \frac{\mathrm{i} \varepsilon^{2}}{2} t \frac{\sum C_{l m n q} k_{l} k_{m} k_{n} k_{q}}{\sqrt{\sum A_{l m} k_{l} k_{m}}}\right) d k \\
& \sup _{t \in\left[0, T \varepsilon^{-2}\right]}\left\|u^{\varepsilon}(\cdot, t)-v^{\varepsilon}(\cdot, t)\right\|_{\left(L^{2}+L^{\infty}\right)\left(\mathbb{R}^{n}\right)} \leq C_{0} \varepsilon
\end{aligned}
$$

Recall: $\|u\|_{X+Y}:=\inf \left\{\left\|u_{1}\right\|_{X}+\left\|u_{2}\right\|_{Y}: u=u_{1}+u_{2}\right\}$

Decomposition lemma

The (formal) equation for v is the "bad Boussinesq equation"

$$
\partial_{t}^{2} v(x, t)=A D^{2} v(x, t)-\varepsilon^{2} C D^{4} v(x, t)
$$

Decomposition lemma

The (formal) equation for v is the "bad Boussinesq equation"

$$
\partial_{t}^{2} v(x, t)=A D^{2} v(x, t)-\varepsilon^{2} C D^{4} v(x, t)
$$

Idea: transform in a well-posed equation with a replacement trick
(1) rewrite last term as $-C D^{4}=E D^{2} A D^{2}$
for a symmetric, positive semidefinite matrix $E \in \mathbb{R}^{n \times n}$
(2) replace $A D^{2}$ by ∂_{t}^{2} to obtain the well-posed equation

$$
\partial_{t}^{2} w^{\varepsilon}(x, t)=A D^{2} w^{\varepsilon}(x, t)+\varepsilon^{2} E D^{2} \partial_{t}^{2} w^{\varepsilon}(x, t)
$$

It is possible that such a matrix E does not exist!

Decomposition lemma

The (formal) equation for v is the "bad Boussinesq equation"

$$
\partial_{t}^{2} v(x, t)=A D^{2} v(x, t)-\varepsilon^{2} C D^{4} v(x, t)
$$

Idea: transform in a well-posed equation with a replacement trick
(1) rewrite last term as $-C D^{4}=E D^{2} A D^{2}$ for a symmetric, positive semidefinite matrix $E \in \mathbb{R}^{n \times n}$
(2) replace $A D^{2}$ by ∂_{t}^{2} to obtain the well-posed equation

$$
\partial_{t}^{2} w^{\varepsilon}(x, t)=A D^{2} w^{\varepsilon}(x, t)+\varepsilon^{2} E D^{2} \partial_{t}^{2} w^{\varepsilon}(x, t)
$$

It is possible that such a matrix E does not exist!

Lemma (Decomposability)

Let $A \in \mathbb{R}^{n \times n}$ be symmetric and positive definite. Let $C \in \mathbb{R}^{n \times n \times n \times n}$.
There exist symmetric and positive semidefinite $E \in \mathbb{R}^{n \times n}$ and $F \in \mathbb{R}^{n \times n \times n \times n}$ such that

$$
-C D^{4}=E D^{2} A D^{2}-F D^{4}
$$

Proof of the error estimate

We have:

(1) $\sup _{t \in\left[0, T \varepsilon^{-2}\right]}\left\|u^{\varepsilon}(\cdot, t)-v^{\varepsilon}(\cdot, t)\right\|_{\left(L^{2}+L^{\infty}\right)\left(\mathbb{R}^{n}\right)} \leq C_{0} \varepsilon$
(2) $\partial_{t}^{2} v^{\varepsilon}=A D^{2} v^{\varepsilon}+\varepsilon^{2} E D^{2} \partial_{t}^{2} v^{\varepsilon}-\varepsilon^{2} F D^{4} v^{\varepsilon}+O\left(\varepsilon^{4}\right)$

Error estimate

Let u^{ε} be the solution to the heterogeneous wave equation. Let w^{ε} be a solution to the weakly dispersive effective equation

$$
\partial_{t}^{2} w^{\varepsilon}(x, t)=A D^{2} w^{\varepsilon}(x, t)+\varepsilon^{2} E D^{2} \partial_{t}^{2} w^{\varepsilon}(x, t)-\varepsilon^{2} F D^{4} w^{\varepsilon}(x, t) .
$$

Then

$$
\sup _{t \in\left[0, T \varepsilon^{-2}\right]}\left\|u^{\varepsilon}(\cdot, t)-w^{\varepsilon}(\cdot, t)\right\|_{\left(L^{2}+L^{\infty}\right)\left(\mathbb{R}^{n}\right)} \leq C_{0} \varepsilon
$$

Proof: Testing procedure to compare (derivatives of) w^{ε} and v^{ε}. Triangle inequality and interpolation lemma.

1-dimensional numerical results

Comparison with w^{ε}

$$
\partial_{t}^{2} w^{\varepsilon}=A D^{2} w^{\varepsilon}+\varepsilon^{2} E D^{2} \partial_{t}^{2} w^{\varepsilon}-\varepsilon^{2} F D^{4} w^{\varepsilon}
$$

2-dimensional numerical results

(a)

Numerical comparison:

- the original problem with ε-scale
- the dispersive equation

$u^{\varepsilon}:$ solution for coefficient a_{ε}

2-dimensional numerical results

(a)

Numerical comparison:

- the original problem with ε-scale
- the dispersive equation

$u^{\varepsilon}:$ solution for coefficient a_{ε}

w^{ε} : solution of weakly dispersive equation

$$
\partial_{t}^{2} w^{\varepsilon}=A D^{2} w^{\varepsilon}+\varepsilon^{2} E D^{2} \partial_{t}^{2} w^{\varepsilon}-\varepsilon^{2} F D^{4} w^{\varepsilon}
$$

Conclusions

- Finite time: The original problem is approximated well by the effective wave equation (no dispersion)
- Long time $t \in\left(0, T \varepsilon^{-2}\right)$: Dispersive effects occur! They are effectively described by the weakly dispersive model

Methods: Bloch waves, replacement trick, energy estimates and interpolation

References:

[1] T.Dohnal, A.Lamacz, B.Schweizer: Dispersive homogenized models and coefficient formulas for waves in general periodic media. Asymptot. Anal. 93(1-2), 2015
[2] T.Dohnal, A.Lamacz, B.Schweizer: Bloch-wave homogenization on large time scales and dispersive effective wave equations. Multiscale Model. Simul. 12(2), 2014
[3] A.Lamacz: Dispersive effective models for waves in heterogeneous media.Math. Models Methods Appl. Sci. 21(9), 2011

Thank you!

