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Waves and dispersion

Physical origins of the wave equation

Elastic media

Pressure in an ideal gas | Maxwell's equations Equations of elasticity

podiv + py(po) Vp =0 Op(uH) = —curl £ pOiu+V -0 =0
Op+poV-v=0 O0y(eE) = curl H o= AViu

In simplified settings, each model leads to the

Wave equation with coefficients p = p(z)
and a = a(z)

pd2u =V - (aVu)

Assumptions:
@ Polarised H- and E-field, H = u(z1, x2)e3
@ Constant coefficients

@ Uniaxial deformation u = u(x1, z2)es
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Heterogeneous media

Let a : R™ — (d,00) be 1-periodic, set

ac(x) := a(x/e)

O =V - (a(z/e)Vui(z)) |
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Classical homogenization): u® & u, where u solves

ula,t) = (") Pu(z,t),  u(z,0)=f(z), du(x,0)=0
Exact solution: u(z,t) = 3 f(z — ¢*t) + 5 f(z + 1) J
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Waves and dispersion

Dispersion

Ansatz: u(z,t) = U(z)e "t with U(z) = k@
0P = PAu = w? = A|k|?

Dispersion relation: w(k) = *clk|
Solutions: (here: z € R)

u(a:,t) — / fi(k>eik:c:|:ic\k\t dk
R

o Choosing fi appropriately, we can satisfy initial conditions

o Observe: solutions depend only on x + ct and on = — ct

Dispersion

... describes the effect that harmonic waves travel at different speeds.
This occurs iff k +— w(k) is not 1-homogeneous.




Main result

The homogenization problem

Waves propagate in a periodic medium, periodicity length £ > 0.

displacement field  »®:R™ x (0,7.) - R
elastic modulus ay : R™" — R"*"

initial displacement f:R"™ — R

Heterogeneous Wave Equation

| A\

Ofus(z,t) =V - (ay (2) Vu'(x, 1))
u®(z,0) = f(z), Owu(x,0)=0

9 ay () € C®(R™,R™"*™) periodic
for the cube Y := (—7, m)", i.e.
ay (y) = ay (y + 2me;)

@ ay (y) symmetric and positive
definite matrix:

ay (y)ij = ay (y);: and

EZj;l(aY(y))ijEigj > ’V|§|2
@ f smooth

Question: What is the effective behavior of u€ ase — 07



Main result

Main result: 7. = Te2

We derive an effective equation for large times!

Constant coefficients:

Weakly dispersive effective equation

A E € R"XM and FF € RXNXnXn

O2w® = AD*w® + e? ED?02w® — €2 F D*w*® AD? =% 4;;0,0;,
. c ED? := Y E;;9;0;,
w®(z,0) = f(z), Ow(z,0)=0 FD* i= 5 Fyjn19;0;0m 0y,




Main result

Main result: 7. = Te2

We derive an effective equation for large times!

Constant coefficients:

Weakly dispersive effective equation

A,E € R"XM and FF € RXNXnXn

O2w® = AD*w® + e? ED?02w® — €2 F D*w*® AD? = ¥ A,;0;0;,
. c ED? := Y E;;9;0;,
w(z,0) = f(z), Oww(z,0)=0 FD* i= 5 Fyjn19;0;0m 0y,

Theorem (Dohnal, Lamacz, B.S., 2014 and 2015)

There exist A, E € R™*™ and F € R"*"*"*" computable from ay, s.t.

O the weakly dispersive effective equation is well-posed
Q there holds the error estimate

sup  flu®(-,t) — w(, t)|| L2 mn)+ oo mr) < Coe.
te[0,Te—2]

Norm: |lul|x 4y := inf{[lut[lx + [luzlly : w= w1+ u2}
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Bloch wave analysis: Basics

1.) f:R™ — R is written
with a Fourier transform:

f@)= | fE©ede
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Bloch wave analysis
Bloch wave analysis: Basics

1.) f:R" — R is written 2.) & is written as £ = k + O with
with a Fourier transform: kecZ"and © € Z := [_%7 %)”

fl@)= [ f&ede } flz) = / Zf(k 1 O)elke 100 4o
R" 7%

=F

3.) F = F(x;0) is expanded in periodic eigenfunctions ®,, (z; ©):

F(2;0) = Y am(0)®(z;0)

meN

U, (7;0) = ®,,(7;0)e'®? solves
J =V (a(2) V¥ (2)) = 1im(O) ‘I’m(fﬁ)J




Main result Bloch wave analysis ec osition lemma and error estimate Numerica

1.) f:R™ — R is written 2.) & is written as £ = k + © with
with a Fourier transform: kLeZ"and © € Z := [,%7 %)n
f(x) = f'(g)eiﬁ-x df f(x) — /sz(k + @)eikm ei®~z de
JR" k
=F

3.) F' = F(z;0) is expanded in periodic eigenfunctions ®,,(z; ©):

Zam )P (5 O)

meN =V (a(z)V¥,,(2)) = pm(©) U ()

U, (2;0) = @, (7;0)el®* solves

Result: The operator L = —V - (a(.)V) acts as a multiplier:

Lf=1L / > 0 (0), (2:0)e'® " d6 = / > @ ()€€ dO
zZ

meN meN



Bloch wave analysis

Bloch analysis |

Bloch-transform f with basis functions w, and coefficients f<, (k)

Step 1: The solution u® of 9?u® = —L.u® can be represented as

Z ws, (z, k) Re (JW) dk

Z/a
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Bloch-transform f with basis functions w;, and coefficients ffn(k)

Step 1: The solution u of 9?u® = —L_u® can be represented as

/ 2 (k xk)Re( \/m) dk

Step 2: Contributions of m > 0 can be neglected:

Fo (R i, (w, k) Re (VI @)

oo
< Coe
L2(R™)

sup
t€(0,00)

m=1 Z/e
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Bloch-transform f with basis functions w;, and coefficients ffn(k)

Step 1: The solution u of 9?u® = —L_u® can be represented as

*(z,t) Z/ e (k xk)Re( m)dk

Step 2: Contributions of m > 0 can be neglected:

Fo (R i, (w, k) Re (VI @)

oo
< Coe
L2(R™)

sup
t€(0,00)

m=1 Z/e

Step 3: Let f be
fz) = (2m) /2 / Fo(k)e™* dk
with Fj : R™ — C supported on K CgﬂR” Then
Ifs — Follz1(z/e) < Coe



Bloch wave analysis

Bloch analysis Il

Step 4: Taylor expansion of the rescaled eigenvalue

1
H3 (k) = 5o (ch) = SN Amkik + > Cimngkikmknky + O(e*)

For the square root we use v/a + ¢ = \/a + ﬁac +O(|c|?)




Bloch wave analysis

Step 4: Taylor expansion of the rescaled eigenvalue

1
(k) = 5 o(ek) = SN Amkik + > Cimngkikmknky + O(e*)

For the square root we use v/a + ¢ = \/a + ﬁc +O(|c|?)

Proposition (Bloch-wave approximation of u*)

ve(x,t) = (2m)~ "/2 / Fo(k FE exp (:l:th/ZAlmklk )

X EXp (:l:la tzclmnqklkmknkq> dk

V2 Aimkikm
sup  |lu®(-,t) = v" (-, D)l (L24Looymny < Coe
te[0,Te 2]

Recall: ||ul|x+y := inf{|lu1|lx + [Ju2lly : v =wu1 + u2}



Decomposition lemma and error estimate

Decomposition lemma

The (formal) equation for v is the “bad Boussinesq equation”

‘8t2v(:1c,t) = AD?v(z,t) — e2CD"(x,t) ‘
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Decomposition lemma

The (formal) equation for v is the “bad Boussinesq equation”
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Idea: transform in a well-posed equation with a replacement trick

@ rewrite last term as —CD* = ED? AD?
for a symmetric, positive semidefinite matrix £ € R™"*"

@ replace AD? by 9? to obtain the well-posed equation
0?we (z,t) = AD*w® (z,t) + e2 ED?*0?w* (,t)

It is possible that such a matrix £ does not exist!



Decomposition lemma and error estimate

The (formal) equation for v is the “bad Boussinesq equation”

latzv(x,t) = AD*v(z,t) — e2CD*v(x,t) ‘

Idea: transform in a well-posed equation with a replacement trick

Q rewrite last term as —CD* = ED?AD?
for a symmetric, positive semidefinite matrix £ € R™*"™

Q replace AD? by 9? to obtain the well-posed equation
02w (x,t) = AD?*w® (x,t) + e2ED?02w* (,t)

It is possible that such a matrix £ does not exist!

Lemma (Decomposability)

Let A € R"*"™ be symmetric and positive definite. Let C € R?*"x"x",
There exist symmetric and positive semidefinite £ € R™*"and
F € RMXnXnXn gch that

—CD* = ED?AD? — FD*




Decomposition lemma and error estimate

We have:
o Supt€[07T572] H’Us(,f) - UE('7t)H(L2+L:>c)(Rn) < CO(—:
Q 070 = AD*v® + e2ED?02v° — 2 F D" + O(e)

Error estimate

Let u® be the solution to the heterogeneous wave equation. Let w® be a
solution to the weakly dispersive effective equation

O2we(x,t) = AD*w®(,t) + e?ED?*0w® (z,t) — 2 F D*w®(a, t).
Then

sup ||u5(-,t) — ’ws(-,t)”(LerLoo)(]Rn) < C()E.
te[0,Te—2]

Proof: Testing procedure to compare (derivatives of) w® and v®.
Triangle inequality and interpolation lemma.



Numerical results

1-dimensional numerical results
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Comparison with w®

820° = AD*w* + 2 ED?0%w° — e2F D J




Numerical results

(a)

Numerical comparison:

@ the original problem with e-scale
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@ the dispersive equation
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4 : solution for coefficient a.



1 lemma and error estimate Numerical results

(a)

Numerical comparison:
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@ the dispersive equation
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¥ solution for coefficient a. wE: solution of weakly dispersive equation

02w = AD*w® + 2ED?*0}w® — e? FD*w*®



Numerical results

Conclusions

@ Finite time: The original problem is approximated well by the
effective wave equation (no dispersion)

@ Long time t € (0, T=~2): Dispersive effects occur! They are
effectively described by the weakly dispersive model

Methods: Bloch waves, replacement trick, energy estimates and
interpolation

£=0.05
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Thank you!
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