Phenomena in the homogenization of Maxwell's equations

Ben Schweizer (TU Dortmund)

April 1, 2025

Ecole Polytechnique, CMAP, Paris

Without Maxwell's Equations

Shortest Paths

Fermat's principle of the fastest path:

Light finds the fastest way to reach the destination,

 $\frac{\sin\Theta_1}{\sin\Theta_2} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$

Wave equation

Huygens' principle of **superpositions**

Wave equation

 $\partial_t^2 u = \Delta u$

Numerical solution

Maxwell's Equations

Variables:

- Electric field E
- Magnetic field H

Simplification:

• Time harmonic solutions

$$H, E \sim e^{-i\omega t}$$

Remarks:

- $\bullet \ {\sf Vacuum:} \ \mu = \varepsilon = 1$
- Material parameter

 $\operatorname{Im} \varepsilon \leftrightarrow$ conductivity

Maxwell's Equations

 $\operatorname{curl} E = -i\omega\mu H$ $\operatorname{curl} H = -i\omega\varepsilon E$

Negative index of refraction

Veselago (1968)

Properties of materials with negative index, Maxwell equations

If $n_1 > 0$ and $n_2 < 0$, then light should be refracted "backward".

Solutions for positive and negative index

But ... in Maxwell's Equations

- $\operatorname{Re} \varepsilon < 0$ possible
- μ is always 1
- ${\rm Re}\,\mu\varepsilon<0:$ light can not travel in the medium

Negative Index: ε and μ negative!

Computer grafics: Negative refraction

Negative index Meta-materials

Wanted: Material with ${\rm Re}\,\mu<0$

- $\bullet\,$ Pendry et al. (\sim 2000) suggest a split ring construction
- Experiments confirm the negative index

A negative index material in experiments ... and in mathematics (H_{η}, E_{η}) solves the Maxwell system with a radiation condition $Curl E_{\eta} = -i\omega H_{\eta}$ $curl H_{\eta} = -i\omega \varepsilon_{\eta} E_{\eta}$

Homogenization

The aim is to replace the **complex structure** of *many* split rings with *high conductivity* by a **homogeneous Meta-material**.

Resulting equations

 $\operatorname{curl} E = -i\omega\mu_{\text{eff}}H$ $\operatorname{curl} H = -i\omega\varepsilon_{\text{eff}}E$

G. Bouchitté and B.S., SIAM J. Mult. Mod. 2010
A. Lamacz and B.S., SIAM J. Math. Anal. 2016
R. Lipton and B.S. Arch. Ration. Mech. Anal. 2018

For appropriate geometry parameters: $\operatorname{Re}(\mu_{\mathrm{eff}}) < 0$ (even though we started from $\mu \equiv 1$) "Many rings with thin slits"

The material parameter is

$$\varepsilon_\eta = \begin{cases} 1+i\frac{\kappa}{\eta^2} & \text{in the rings} \\ 1 & \text{else} \end{cases}$$

The parameter η appears $3 \times$:

- many rings
- In high conductivity
- very thin slit

Formally, 1D-rings

Thin rings:

$$\begin{split} Y &= (0,1)^3 \\ \Sigma &= S^1 \subset Y \\ \dim(\Sigma) &= 1 \end{split}$$

$$\operatorname{curl} E_{\eta} = -i\omega H_{\eta}$$
$$\operatorname{curl} H_{\eta} = -i\omega\varepsilon_{\eta}E_{\eta}$$

Magnetic field: $\operatorname{curl} H^0 = J$

Flux:

$$j_{\eta} := \eta \varepsilon_{\eta} E_{\eta} \rightharpoonup J$$

supp $J \subset \Sigma$
div $J = 0$
 $\Rightarrow J = j\tau \mathcal{H}^{1} \lfloor \Sigma.$

There is a zero-average cell solution H^0

Its amplitude is given by the limiting flux \boldsymbol{J} in the ring

Homogenization proof

Two-scale convergence: $H_{\eta}(x) \to H_0(x,y)$ and $E_{\eta}(x) \to E_0(x,y)$ in the sense of two-scale convergence

Interpretation: In the single periodicity cell $\boldsymbol{Y} = [0,1]^3$ the solution looks like

$$H_{\eta}(x) \sim H_0(x, y), \qquad E_{\eta}(x) \sim E_0(x, y)$$

Easy part: The limits $H_0(x, .)$ and $E_0(x, .)$ solve the Maxwell equations in highest order:

$$\begin{split} \operatorname{div}_y \, H_0(x,y) &= 0 \text{ in } Y, \quad \operatorname{curl}_y E_0(x,y) = 0 \text{ in } Y, \\ & \operatorname{curl}_y H_0(x,y) = 0 \text{ in } Y \setminus \Sigma \end{split}$$

A new field:

$$J_\eta := \eta \varepsilon_\eta E_\eta \to J_0(x, y)$$

Write the two-scale limit with four cell solutions as

$$H_0(x,y) = j(x)H^0(y) + \sum_{k=1}^3 H_k(x)H^k(y)$$

and determine the **prefactor** j with a slit analysis

Thin conductive microstructures

Joint with David Wiedemann, TU Dortmund

Micro-wave oven

Window shielding

Polarization

Reflection

Microwaves: $\lambda \sim 12 \text{ cm}$

Transmission

Polarization

Light: $\lambda \sim 400-700~{\rm nm}$

Maxwell's equations

$$\begin{split} & \operatorname{curl} E^{\eta} = i \omega \mu H^{\eta} + f_h & \text{ in } \Omega_{\eta} \\ & \operatorname{curl} H^{\eta} = -i \omega \varepsilon E^{\eta} + f_e & \text{ in } \Omega_{\eta} \\ & E^{\eta} \times \nu = 0 & \text{ on } \partial \Omega_{\eta} \end{split}$$

Homogenization question

Assume $E^{\eta} \to E^{\text{hom}}$ and $H^{\eta} \to H^{\text{hom}}$ What equations for E^{hom} , H^{hom} ?

Macroscopic geometry:

$$\Omega = (0, 1)^2 \times (-1, 1)$$

$$\Gamma = (0, 1)^2 \times \{0\}$$

$$\begin{split} \Sigma_\eta &= \bigcup_{k \in \mathbb{Z}^2} \eta[(k_1,k_2,0) + \Sigma_Y^\eta] \\ \Omega_\eta &\coloneqq \Omega \setminus \Sigma_\eta \end{split}$$

Homogenization result

η -problem

$$\begin{split} & \mathrm{curl} E^\eta = i \omega \mu H^\eta + f_h & \text{ in } \Omega_\eta \\ & \mathrm{curl} H^\eta = -i \omega \varepsilon E^\eta + f_e & \text{ in } \Omega_\eta \\ & E^\eta \times \nu = 0 & \text{ on } \partial \Omega_\eta \end{split}$$

limit problem

$$\begin{split} \mathrm{curl} E^{\mathsf{hom}} &= i \omega \mu H^{\mathsf{hom}} + f_h & \text{ in } \Omega \\ \mathrm{curl} H^{\mathsf{hom}} &= -i \omega \varepsilon E^{\mathsf{hom}} + f_e & \text{ in } \Omega \setminus \Gamma \\ E^{\mathsf{hom}} \times \nu &= 0 & \text{ on } \partial \Omega \end{split}$$

Theorem (Homogenization result)

Let $(E^{\eta}, H^{\eta}) \in L^2(\Omega_{\eta}, \mathbb{C}^3) \times L^2(\Omega_{\eta}, \mathbb{C}^3)$ be solutions of the η -problem Let trivial extensions converge weakly to (E^{hom}, H^{hom}) in $L^2(\Omega, \mathbb{C}^3)$ Then (E^{hom}, H^{hom}) solves the homogenized system

 \longrightarrow above system together with interface conditions at Γ

Question: What are the interface conditions?

On (asymptotic) connectedness

connectedness (asymptotically)

Disconnected

Connected

Disonnected

Connected (if wires are asymptotically thick)

Connected if gaps are asymptotically small

Asymptotic connectedness

Definition (Asymptotically connected) If Ψ_{η} of *H*-type in direction e_1 exists,

$$\eta^{\frac{1}{2}} \| \Psi_{\eta} - \operatorname{sgn}(x_3) e_2 \|_{L^2(Z^{\eta})} \to 0$$
$$\eta^{-\frac{1}{2}} \| \operatorname{curl} \Psi_{\eta} \|_{L^2(Z^{\eta})} \to 0$$

then Σ_Y^{η} is asymptotically connected in direction e_1

Extend cell-function to cylinder

$$Z^{\eta} = (0,1)^2 \times \mathbb{R} \setminus \Sigma_Y^{\eta}$$

Connectedness implies vanishing *E*-field on Γ

 Ψ_η a sequence of the H-type (direction e_1), convergences in $L^2(\Omega)$

$$\mathbf{1}_{\Omega_{\eta}}(\cdot)\Psi_{\eta}(\cdot/\eta) \to \operatorname{sgn}(x_{3})e_{2}, \qquad \mathbf{1}_{\Omega_{\eta}}(\cdot)(\operatorname{curl}\Psi_{\eta})(\cdot/\eta) \to 0$$

A product $\phi_\eta = \varphi(\cdot) \Psi_\eta(\cdot/\eta)$ satisfies

$$\mathbf{1}_{\Omega_{\eta}}(\cdot)\mathrm{curl}\big(\varphi(\cdot)\Psi_{\eta}(\cdot/\eta)\big)\to\mathrm{curl}(\varphi e_{2})\mathrm{sgn}(x_{3})$$

This test-function yields

$$\begin{split} 0 &= \int_{\Omega_{\eta}} \operatorname{curl} E^{\eta}(x) \cdot \phi_{\eta}(x) - E^{\eta}(x) \cdot \operatorname{curl} \phi_{\eta}(x) \, \mathrm{d}x \\ &= \int_{\Omega} \operatorname{curl} E^{\eta} \cdot \mathbf{1}_{\Omega_{\eta}} \varphi \, \Psi_{\eta}(\cdot/\eta) - E^{\eta} \cdot \mathbf{1}_{\Omega_{\eta}} \operatorname{curl} \big(\varphi \Psi_{\eta}(\cdot/\eta) \big) \\ &\to \int_{\Omega} \left\{ \operatorname{curl} E \cdot \varphi \, e_{2} - E \cdot \operatorname{curl}(\varphi e_{2}) \right\} \operatorname{sgn}(x_{3}) \\ &= 2 \int_{\Gamma} (E \times e_{2}) \cdot e_{3} \, \varphi = 2 \int_{\Gamma} E_{1} \, \varphi \qquad \begin{array}{c} \operatorname{Result:} \\ \Sigma_{Y}^{\eta} \text{ asy. connected in } e_{1} \\ & \operatorname{Then} E_{1}|_{\Gamma} = 0 \end{array}$$

Asymptotic disconnectedness

Definition (Asymptotically disconnected)

If Ψ_{η} of *E*-type in direction e_2 exists,

$$\begin{split} \Phi_\eta(x) &= 0 \quad \text{in } \Sigma_Y^\eta \\ \eta^{\frac{1}{2}} \| \Phi_\eta - e_2 \|_{L^2(Z)} &\to 0 \\ \eta^{-\frac{1}{2}} \| \text{curl} \Phi_\eta \|_{L^2(Z)} &\to 0 \end{split}$$

 Σ_Y^η is asymptotically disconnected

Result:

Assume: Σ_Y^{η} is asymptotically disconnected in direction e_2

Then $\llbracket H_1 \rrbracket_{\Gamma} = 0$

Limit problem

Theorem (Homogenization result)

 $(E^{\eta}, H^{\eta}) \in L^2(\Omega_{\eta}, \mathbb{C}^3) \times L^2(\Omega_{\eta}, \mathbb{C}^3)$ solutions to the η -problem Trivial extensions of E^{η} and H^{η} weakly to (E^{\hom}, H^{\hom}) in $L^2(\Omega)$

Then (E^{hom}, H^{hom}) solves the following interface conditions:

Case 1: Reflecting. If Σ_Y^{η} is asymptotically connected in e_1 and e_2 : $E_1^{hom}|_{\Gamma} = E_2^{hom}|_{\Gamma} = 0$

Case 2: Inactive. If Σ_Y^{η} is asymptotically **disconnected** in e_1 and e_2 : $\llbracket H_1^{hom} \rrbracket_{\Gamma} = \llbracket H_2^{hom} \rrbracket_{\Gamma} = 0$

Case 3: Polarising. j = 3 - i. If Σ_Y^{η} is connected in e_i and disconnected in e_i :

 $E_i^{\hom}|_{\Gamma} = [\![H_i^{\hom}]\!]_{\Gamma} = 0$

Asymptotic connectedness for wire structures

 $T_{r_{\eta}} \coloneqq (0,1) \times B_{r_{\eta}}(z_0) \qquad T_{r_{\eta},I_{\eta}} \coloneqq ((0,1) \setminus I_{\eta}) \times B_{r_{\eta}}(z_0)$

Is T_{r_n,I_n} asymptotically connected in the directions e_1 and e_2 ?

- If $\eta |\ln(r_{\eta})| \to 0$ and $\eta^{-1}r_{\eta}^{-2}|I_{\eta}| \to 0$, then $T_{r_{\eta},I_{\eta}}$ is asymptotically connecting in the direction e_1
- Wires aligned parallel to the e_1 direction are asymptotically disconnected in direction e_2
- If $\eta |\ln(r_\eta)| \to \infty$, then $T_{r_\eta} = T_{r_\eta, \emptyset}$ is asymptotically disconnected in the direction e_1

Cell functions of H-type

Definition (Asymptotically connected)

Needs Ψ_{η} of *H*-type in e_1 :

$$\eta^{\frac{1}{2}} \| \Psi_{\eta} - \operatorname{sgn}(x_3) e_2 \|_{L^2(Z^{\eta})} \to 0$$
$$\eta^{-\frac{1}{2}} \| \operatorname{curl} \Psi_{\eta} \|_{L^2(Z^{\eta})} \to 0$$

l

Construction of Ψ

 $\partial_2 v_r^\psi = -1 \text{ on } \{z_2 = 1\}$, $\partial_2 v_r^\psi = 0 \text{ on } \{z_2 = 0\}$ Need: $\eta |\ln(r_\eta)| \to 0$

Results (for inclusions along a manifold)

- Homogenized equation depends on connectivity of the inclusions
- Connectivity must be understood in an asymptotic sense It is defined via the existence of cell functions
- Wire constructions Wires are connected under the conditions
 - Radius not too small:

$$\eta |\ln(r_\eta)| \to 0$$

Gaps not too wide:

$$\eta^{-1}r_{\eta}^{-2}|I_{\eta}| \to 0$$

Thank you!