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Without Maxwell’s Equations

Shortest Paths
Fermat’s principle of
the fastest path:

Light finds the
fastest way to reach
the destination,

sin Θ1

sin Θ2
= v1

v2
= n2

n1

Wave equation

Huygens’ principle
of superpositions

Wave equation
∂2
t u = ∆u

Numerical solution



Maxwell’s Equations

Variables:
Electric field E
Magnetic field H

Simplification:
Time harmonic solutions

H,E ∼ e−iωt

Remarks:
Vacuum: µ = ε = 1
Material parameter

Im ε ↔ conductivity

Maxwell’s Equations

curl E = iωµH

curl H = −iωεE



Negative index of refraction

Veselago (1968)
Properties of materials with negative

index, Maxwell equations

If n1 > 0 and n2 < 0, then light
should be refracted “backward”.

Solutions for positive and negative index

But ... in Maxwell’s Equations
Re ε < 0 possible
µ is always 1
Reµε < 0: light can not travel in
the medium

Negative Index: ε and µ negative!

Computer grafics: Negative refraction



Negative index Meta-materials

Wanted: Material with Reµ < 0
Pendry et al. (∼ 2000) suggest a split ring construction
Experiments confirm the negative index

A negative index material in experiments ... and in mathematics
(Hη, Eη) solves the Maxwell system
with a radiation condition

curl Eη = iωHη

curl Hη = −iωεηEη



Homogenization

The aim is to replace the complex structure of many split rings with
high conductivity by a homogeneous Meta-material.

Resulting equations

curl E = iωµeffH

curl H = −iωεeffE

G. Bouchitté and B.S., SIAM J. Mult. Mod. 2010

A. Lamacz and B.S., SIAM J. Math. Anal. 2016

R. Lipton and B.S. Arch. Ration. Mech. Anal. 2018

For appropriate geometry parameters: Re(µeff) < 0
(even though we started from µ ≡ 1)



Microscopic geometry

“Many rings with thin slits”
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The material parameter is

εη =
{

1 + i κη2 in the rings
1 else

The parameter η appears 3×:
1 many rings
2 high conductivity
3 very thin slit



Formally, 1D-rings

Thin rings:

Y = (0, 1)3

Σ = S1 ⊂ Y

dim(Σ) = 1

Flux:

jη := ηεηEη ⇀ J

supp J ⊂ Σ
div J = 0

⇒ J = jτH1⌊Σ.

curl Eη = iωHη

curl Hη = −iωεηEη

Magnetic field:
curlH0 = J

There is a zero-average cell solution H0

Its amplitude is given by the limiting flux J in the ring



Homogenization proof
Two-scale convergence: Hη(x) → H0(x, y) and Eη(x) → E0(x, y) in
the sense of two-scale convergence

Interpretation: In the single periodicity cell Y = [0, 1]3 the solution
looks like

Hη(x) ∼ H0(x, y), Eη(x) ∼ E0(x, y)

Easy part: The limits H0(x, .) and E0(x, .) solve the Maxwell equations
in highest order:

divy H0(x, y) = 0 in Y, curly E0(x, y) = 0 in Y,
curlyH0(x, y) = 0 in Y \ Σ

A new field:
Jη := ηεηEη → J0(x, y)

Write the two-scale limit with four cell solutions as

H0(x, y) = j(x)H0(y) +
3∑
k=1

Hk(x)Hk(y)

and determine the prefactor j with a slit analysis



Thin conductive microstructures

Joint with David Wiedemann, TU Dortmund

Micro-wave oven

Reflection

Window shielding

Transmission

Polarization

Polarization

Microwaves: λ ∼ 12 cm Light: λ ∼ 400 − 700 nm



The η-problem

Maxwell’s equations

curlEη = iωµHη + fh in Ωη
curlHη = −iωεEη + fe in Ωη
Eη × ν = 0 on ∂Ωη

Homogenization question
Assume Eη → Ehom and Hη → Hhom

What equations for Ehom, Hhom?

Macroscopic
geometry:

Ω = (0, 1)2 × (−1, 1)
Γ = (0, 1)2 × {0}

Γ

Ω+

Ω−

ΣηY ⊂ Y = (0, 1)3

Ση =
⋃
k∈Z2

η[(k1, k2, 0) + ΣηY ]

Ωη := Ω \ Ση



Homogenization result

η-problem

curlEη = iωµHη + fh in Ωη
curlHη = −iωεEη + fe in Ωη
Eη × ν = 0 on ∂Ωη

limit problem

curlEhom = iωµHhom + fh in Ω
curlHhom = −iωεEhom + fe in Ω \ Γ
Ehom × ν = 0 on ∂Ω

Theorem (Homogenization result)
Let (Eη, Hη) ∈ L2(Ωη,C3) × L2(Ωη,C3) be solutions of the η-problem

Let trivial extensions converge weakly to (Ehom, Hhom) in L2(Ω,C3)
Then (Ehom, Hhom) solves the homogenized system

−→ above system together with interface conditions at Γ

Question: What are the interface conditions?



On (asymptotic) connectedness

obstacle Ση ΣηY connectedness (asymptotically)

Disconnected

Connected

Disonnected

Connected (if wires are
asymptotically thick)

Connected if gaps are
asymptotically small



Asymptotic connectedness

e1 e2

e3

Definition (Asymptotically connected)
If Ψη of H-type in direction e1 exists,

η
1
2 ∥Ψη − sgn(x3)e2∥L2(Zη) → 0

η− 1
2 ∥curlΨη∥L2(Zη) → 0

then ΣηY is asymptotically connected in direction e1

η → 0

Extend cell-function
to cylinder

Zη = (0, 1)2 ×R\ΣηY



Connectedness implies vanishing E-field on Γ

Ψη a sequence of the H-type (direction e1), convergences in L2(Ω)

1Ωη (·)Ψη(·/η) → sgn(x3)e2 , 1Ωη (·)(curlΨη)(·/η) → 0

A product ϕη = φ(·)Ψη(·/η) satisfies

1Ωη
(·)curl

(
φ(·)Ψη(·/η)

)
→ curl(φe2) sgn(x3)

This test-function yields

0 =
∫

Ωη

curlEη(x) · ϕη(x) − Eη(x) · curlϕη(x) dx

=
∫

Ω
curlEη · 1Ωη

φ Ψη(·/η) − Eη · 1Ωη
curl

(
φΨη(·/η)

)
→

∫
Ω

{curlE · φe2 − E · curl(φe2)} sgn(x3)

= 2
∫

Γ
(E × e2) · e3 φ = 2

∫
Γ
E1 φ

Result:
ΣηY asy. connected in e1

Then E1|Γ = 0



Asymptotic disconnectedness

e1 e2

e3

Definition (Asymptotically disconnected)
If Ψη of E-type in direction e2 exists,

Φη(x) = 0 in ΣηY
η

1
2 ∥Φη − e2∥L2(Z) → 0

η− 1
2 ∥curlΦη∥L2(Z) → 0

ΣηY is asymptotically disconnected

η → 0

Result:
Assume: ΣηY is asymptotically
disconnected in direction e2

Then JH1KΓ = 0



Limit problem

Theorem (Homogenization result)
(Eη, Hη) ∈ L2(Ωη,C3) × L2(Ωη,C3) solutions to the η-problem
Trivial extensions of Eη and Hη weakly to (Ehom, Hhom) in L2(Ω)

Then (Ehom, Hhom) solves the following interface conditions:

Case 1: Reflecting. If ΣηY is asymptotically connected in e1 and e2:
Ehom

1 |Γ = Ehom
2 |Γ = 0

Case 2: Inactive. If ΣηY is asymptotically disconnected in e1 and e2:
JHhom

1 KΓ = JHhom
2 KΓ = 0

Case 3: Polarising. j = 3 − i. If ΣηY is connected in ei and
disconnected in ej :

Ehom
i |Γ = JHhom

i KΓ = 0



Asymptotic connectedness for wire structures

Trη
:= (0, 1) ×Brη

(z0) Trη,Iη
:= ((0, 1) \ Iη) ×Brη

(z0)

e1 e2

e3 (0, z0)

rη

Trη,Iη

|Iη|

(1, 0)

(0, 1)

rη

z0Br(z0)

Vr

Is Trη,Iη asymptotically connected in the directions e1 and e2?

If η| ln(rη)| → 0 and η−1r−2
η |Iη| → 0, then Trη,Iη

is asymptotically
connecting in the direction e1

Wires aligned parallel to the e1 direction are asymptotically
disconnected in direction e2

If η| ln(rη)| → ∞, then Trη
= Trη,∅ is asymptotically disconnected in

the direction e1



Cell functions of H-type
Definition (Asymptotically connected)
Needs Ψη of H-type in e1:

η
1
2 ∥Ψη − sgn(x3)e2∥L2(Zη) → 0

η− 1
2 ∥curlΨη∥L2(Zη) → 0 e1 e2

e3

(1, 0)

(0, 1)

rη

z0Br(z0)

Vr

∆vψr = 0
∇vψr · n = 1

|∂Br(z0)| on ∂Br ,

Construction of Ψ

Ψη(x) :=

 0
ψrη,1
ψrη,2

 (x2, x3) 1{0<x3<1} + e2 1{x3>1}

curlΨη(x3) =
(
∇⊥ · ψrη

)
(x2, x3) e1 1{0<x3<1}

ψr(z) :=
{

∇⊥uψr (z) for z ∈ Br(z0) ,
∇⊥vψr (z) for z ∈ V \Br(z0)

∂2v
ψ
r = −1 on {z2 = 1} , ∂2v

ψ
r = 0 on {z2 = 0} Need: η| ln(rη)| → 0



Results (for inclusions along a manifold)

Homogenized equation depends on connectivity of the inclusions
Connectivity must be understood in an asymptotic sense It is defined
via the existence of cell functions
Wire constructions Wires are connected under the conditions

Radius not too small:
η| ln(rη)| → 0

Gaps not too wide:
η−1r−2

η |Iη| → 0

Thank you!
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