

Ben Schweizer

Fakultät für Mathematik, TU Dortmund

25. September 2024

- Learn basic neural network vocabulary
- Understand training of a network
- Loose your fear (if there was any)

Disclaimer

I am not at all an expert in neural networks!

Literature: I am following the wonderful introduction of Michael Nielsen from 2019, see http://neuralnetworksanddeeplearning.com/

My main contribution is to adapt the exposition for mathematicians

Let the computer recognize the pixel graphic

 504192

as the number 504192.

We provide:

- o the 100 images on the right
- ... together with the information: First row is "0", "4", "1", "9", ... Second row is "5", "3", ...

Note: The given "5" is not *identical* to any "5" in the list

Idea of the analyst (not necessarily smart)

Introduce a measure of distance for pixel graphics

An idea of the 1950ies: The perceptron

 \rightarrow A device to convert input into output

• Input
$$
x = (x_1, x_2, x_3) \in \mathbb{R}^3
$$

- Decision parameters I: Weight vector $w = (w_1, w_2, w_3) \in \mathbb{R}^3$ \bullet
- Decision parameters II: A threshold value $b \in \mathbb{R}$ \bullet

An interesting example with only 2 inputs: Choose $w_1 = w_2 = -2$ and $b = 3$

Result for $(x_1, x_2) = (1, 1)$: $w \cdot x + b = -4 + 3 = -1 \le 0$, output: 0

Result in any other case: $w \cdot x + b \geq 0$, output: 1

 \rightarrow The above perceptron realizes a NAND

Imagine what you can do with this:

Above: Sign function to define the output

 $sign(z) := \begin{cases} 1 & \text{if } z \geq 0 \\ 0 & \text{if } z \geq 0 \end{cases}$ 0 else An input x gives the output $sign(w \cdot x + b)$

This makes the analyst happy: Let us define a smoothed version:

 σ is a smooth function on R, monotonically increasing from 0 to 1

Input: $x \in \mathbb{R}^6$

Values in first hidden layer: $y=y^{(1)}\in\mathbb{R}^4$

Four vectors w of the second column, each with 6 entries: matrix $A^{(1)} \in \mathbb{R}^{4 \times 6}$

Four bias numbers "b" of the second column give a vector $b^{(1)} \in \mathbb{R}^4$

Simple math for a complicated network

 y is calculated as

$$
y = \sigma(A \cdot x + b)
$$

Note: σ is applied to each entry of $A \cdot x + b$ separately

Entire network: input = $x =: y^{(0)}$, $y^{(1)} := \sigma(A^{(1)} \cdot y^{(0)} + b^{(1)})$, $y^{(2)} := \sigma(A^{(2)} \cdot y^{(1)} + b^{(2)})$, output $:= \sigma(A^{(3)} \cdot y^{(2)} + b^{(3)})$

What did we construct?

We constructed a map $f:\mathbb{R}^6 \to \mathbb{R}$ with values in $[0,1].$

The map depends on the entries of $A^{(1)},\, A^{(2)},\, A^{(3)},\, b^{(1)},\, b^{(2)},\, b^{(3)}$

Idea of neural networks:

We seek a function $f:\mathbb{R}^N\rightarrow\mathbb{R}$ that realizes "this is a 4 ":

N: number of pixels for the graphic of one digit, e.g.: $N = 28 \times 28$ $Input: 504/92$

maps the *first* pixel square ("the 5") to something near 0 f maps the second pixel square ("the 0 ") to something near 0 f maps the *third* pixel square ("the 4 ") to something near 1, etc.

Task

Find parameters $A^{(1)}$, $A^{(2)}$, $A^{(3)}$, $b^{(1)}$, $b^{(2)}$, $b^{(3)}$ such that f as above realizes the function "this is a 4 "

For training, we have a finite set of inputs. For some $K \in \mathbb{N}$:

$$
X_T = (x^1, \ldots, x^K)
$$

We are given the values $R_{T}=(r^{1},...,r^{K})$ of "correct" outputs

The perfect function would satisfy: $f(x^k) = r^k$ for all $k \leq K$

Cost function ($=$ Error $=$ Loss)

We use the squared ℓ^2 -norm to measure the error,

$$
C(A,b) := \frac{1}{2K} \sum_{k=1}^{K} |f_{A,b}(x^k) - r^k|^2
$$

Left to do:

Use the steepest decent algorithm to find A and b such that C is minimal!

Cost function

$$
C(A,b):=\frac{1}{2K}\sum_{k\leq K}|f_{A,b}(x^k)-r^k|^2
$$

Aim: Calculate the derivatives

$$
\frac{\partial}{\partial a_{i,j}} C(A,b) \quad \text{and} \quad \frac{\partial}{\partial b_i} C(A,b)
$$

We perform first the "natural" way to calculate all derivatives

Main difficulty: x is fixed and we differentiate with respect to parameters, e.g., $b_i^{(q)}$ i

Later, we learn backpropagation \longrightarrow easier and faster to calculate (and harder to understand)

The first layer of the network

$$
y^{(0)} := x \text{ (the input)}
$$

$$
z^{(1)} := A^{(1)} \cdot y^{(0)} + b^{(1)}, \qquad \qquad y^{(1)} := \sigma(z^{(1)})
$$

We calculate:

$$
\frac{\partial y^{(1)}_\ell}{\partial a^{(1)}_{\ell,j}} = \sigma'(z^{(1)}_\ell) \, \frac{\partial z^{(1)}_\ell}{\partial a^{(1)}_{\ell,j}} = \sigma'(z^{(1)}_\ell) \, y^{(0)}_j \quad \text{ and } \quad \frac{\partial y^{(1)}_\ell}{\partial b^{(1)}_\ell} = \sigma'(z^{(1)}_\ell)
$$

For $\ell \neq i$:

$$
\frac{\partial y^{(1)}_\ell}{\partial a^{(1)}_{i,j}} = \sigma'(z^{(1)}_\ell) \frac{\partial z^{(1)}_\ell}{\partial a^{(1)}_{i,j}} = 0 \quad \text{ and } \quad \frac{\partial y^{(1)}_\ell}{\partial b^{(1)}_i} = 0
$$

For given x , all these real numbers can be evaluated!

Some derivatives are exactly as in the first layer, e.g.:

$$
\frac{\partial y^{(2)}_\ell}{\partial a^{(2)}_{\ell,j}} = \sigma'(z^{(2)}_\ell)\,y^{(1)}_j
$$

As noted above, e.g.:
$$
\frac{\partial y_{\ell}^{(2)}}{\partial b_{\ell}^{(3)}} = 0
$$

There are still interesting derivatives to calculate ...

The second layer of the network $y^{(0)} := x$ (the input) $z^{(1)} := A^{(1)} \cdot y^{(0)} + b^{(1)}, \quad y^{(1)} := \sigma(z^{(1)})$ $z^{(2)} := A^{(2)} \cdot y^{(1)} + b^{(2)}, \quad \textsf{output} := y^{(2)} := \sigma(z^{(2)})$

$$
\frac{\partial y^{(2)}_\ell}{\partial a^{(1)}_{i,j}} = \sigma'(z^{(2)}_\ell) \, \frac{\partial z^{(2)}_\ell}{\partial a^{(1)}_{i,j}} = \sigma'(z^{(2)}_\ell) \, a_{\ell,i} \, \frac{\partial y^{(1)}_i}{\partial a^{(1)}_{i,j}}
$$

Simplify by inserting ?

$$
\frac{\partial y_i^{(1)}}{\partial a_{i,j}^{(1)}} = \sigma'(z_i^{(1)}) y_j^{(0)}
$$

In this way, simple evaluations yield all derivatives

$$
\frac{\partial y^{(p)}_\ell}{\partial a^{(q)}_{i,j}} \quad \text{ and } \quad \frac{\partial y^{(p)}_\ell}{\partial b^{(q)}_i} \quad \text{ for every input } x = y^{(0)}
$$

Cost function

$$
C(A, b) := \frac{1}{2K} \sum_{k \le K} |f_{A, b}(x^k) - r^k|^2
$$

Output $=$ value in last layer:

$$
f_{A,b}(x^k) = y_1^{(p)}
$$

(for p layers; 1 is the only index for the last layer)

Result

$$
\frac{\partial}{\partial a_{i,j}^{(q)}} C(A,b) = \frac{1}{K} \sum_{k \le K} \left(f_{A,b}(x^k) - r^k \right) \left. \frac{\partial y_1^{(p)}}{\partial a_{i,j}^{(q)}} \right|_{x=x^k}
$$

Choose a step size $\Delta t > 0$

Let a guess for the network be given: $A=A^{\mathrm{old}}$ and $b=b^{\mathrm{old}}$

For the training data $(x^k)_{k\leq K}$ and $(r^k)_{k\leq K}$ and in the point $(A, b) = (A^{\text{old}}, b^{\text{old}})$, calculate all derivatives

$$
\frac{\partial}{\partial a^{(q)}_{i,j}} C(A,b) \quad \text{ and } \quad \frac{\partial}{\partial b^{(q)}_i} C(A,b)
$$

Update/improve coefficients by setting

$$
a_{i,j}^{(q),\text{new}} := a_{i,j}^{(q),\text{old}} - \Delta t \frac{\partial}{\partial a_{i,j}^{(q)}} C(A,b)
$$

$$
b_i^{(q),\text{new}} := b_i^{(q),\text{old}} - \Delta t \frac{\partial}{\partial b_i^{(q)}} C(A,b)
$$

Here comes a really smart idea ... Introduce the new variables

$$
\delta_j^{(q)}:=\frac{\partial C(A,b)}{\partial z_j^{(q)}}
$$

This is confusing!

The input x is fixed We can change the $a_{j,\ell}^{(q)}$ and the $b_j^{(q)}$ $j^{(q)}_{j}$, but not "directly" the $z^{(q)}_{j}$ j

More precisely:

$$
\delta_j^{(q),k}:=\frac{\partial}{\partial z_j^{(q)}}\frac{1}{2K}|y_1^{(p),k}-r^k|^2
$$

This is well-defined

We consider layer q as input layer, keep all a and b fixed. We check how C changes when $z^{(q)}_i$ $j^{(q)}_{j}$ is modified with the data of input x^{k}

The derivative with respect to the last layer (p) can be evaluated

$$
\delta_1^{(p),k} = \frac{\partial C(A,b)}{\partial z_1^{(p)}} = \frac{1}{K} \left(f_{A,b}(x^k) - r^k \right) \sigma'(z_1^{(p)})
$$

Next aim (suppressing k):

$$
\delta_j^{(q)}:=\frac{\partial C(A,b)}{\partial z_j^{(q)}}
$$

Apply the chain-rule

$$
\delta_{\ell}^{(q-1)} = \frac{\partial C(A,b)}{\partial z_{\ell}^{(q-1)}} = \sum_{j} \frac{\partial C(A,b)}{\partial z_{j}^{(q)}} \frac{\partial z_{j}^{(q)}}{\partial z_{\ell}^{(q-1)}}
$$

$$
= \sum_{j} \delta_{j}^{(q)} a_{j,\ell}^{(q)} \sigma'(z_{\ell}^{(q-1)})
$$

This provides all the $\delta^{(q)}_\ell$ $\ell^{(q)}$ (calculating "backwards")!

Assume: We have calculated all the

$$
\delta_i^{(q),k} = \frac{\partial C(A,b)}{\partial z_i^{(q)}} = \frac{\partial}{\partial z_i^{(q)}} \frac{1}{2K} |y_1^{(p),k} - r^k|^2
$$

Claim: This provides all the desired information!

We obtain all derivatives of C

$$
\frac{\partial C(A,b)}{\partial a_{i,j}^{(q)}} = \frac{\partial}{\partial a_{i,j}^{(q)}} \frac{1}{2K} \sum_{k} |y_1^{(p),k} - r^k|^2 = \sum_{k} \delta_i^{(q),k} \frac{\partial z_i^{(q)}}{\partial a_{i,j}^{(q)}}
$$

$$
= \sum_{k} \delta_i^{(q),k} y_j^{(q-1)}
$$

Similarly:

$$
\frac{\partial C(A,b)}{\partial b_i^{(q)}} = \sum_k \delta_i^{(q),k}
$$

[Building blocks](#page-2-0) [Cost function and gradients](#page-8-0) [Backpropagation](#page-15-0) [Batches and Cross-entropy](#page-21-0)

We had the following formulas for derivatives:

Forward

$$
\frac{\partial y^{(q)}_\ell}{\partial a^{(q)}_{\ell,j}} = \sigma'(z^{(q)}_\ell)\,y^{(q-1)}_j\\[0.4cm] \frac{\partial y^{(q)}_\ell}{\partial a^{(q-1)}_{i,j}} = \sigma'(z^{(q)}_\ell)\,a_{\ell,i}\,\frac{\partial y^{(q-1)}_i}{\partial a^{(q-1)}_{i,j}}
$$

Backward

$$
\delta_{\ell}^{(q-1)} = \sum_{j} \delta_{j}^{(q)} a_{j,\ell}^{(q)} \sigma'(z_{\ell}^{(q-1)})
$$

The number of unknowns is very different:

- Backward: Number of nodes of the network
- Forward: Number of nodes times number of edges

"weights" The values of the w 's. For us: The entries $a_{i,j}^{(q)}$ of the matrices "biases" The values of the b 's, hence: the $b_i^{\left(q\right)}$ i "activation-function" In our case: The sigmoid σ "activations" The values $y^{(q)}_i$ $\zeta_j^{(q)}$ (the $z_j^{(q)}$ $j^{(q)}_j$ are pre-activations) "Forward-Pass" Go forward through the network, calculate all the $y_i^{(q)}$ $\bar{z}_j^{(q)}$ and $z_j^{(q)}$ j "Backward-Pass" Go backward through the network, calculate all derivatives, using the values of the Forward-Pass "Output error " $\mathsf{The}\,\,\delta_j^{(q)}=\frac{\partial C(A,b)}{\partial z^{(q)}}$ $\partial z^{(q)}_j$ "learning rate" The Δt in the gradient descent scheme

zs.append(z) $activation = sigmoid(z)$

```
activations.append(activation)
# backward pass
delta = self.cost_derivative(activations[-1], y) * \
    sigmoid prime(zs[-1])nabla b[-1] = deltanabla wf - 11 = np.dot(detta, activations[-2].transpose())# Note that the variable l in the loop below is used a little
# differently to the notation in Chapter 2 of the book. Here,
# l = 1 means the last layer of neurons, l = 2 is the
# second-last layer, and so on. It's a renumbering of the
# scheme in the book, used here to take advantage of the fact
# that Python can use negative indices in lists.
for l in xrange(2, self.num_layers):
    z = zs[-1]sp = sigmoid prime(z)delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
    nabla b[-1] = deltanabla_w[-l] = np.dot(delta, activations[-l-1].transpose())
return (nabla b, nabla w)
```


Let's recall what has to be done:

 $\bullet\,$ For every $x^k\colon$ forward-pass to calculate activations $\bullet\,$ For every x^k : backward-pass to calculate derivatives Taking an average $\frac{1}{K}\sum_{k=1}^{K}$ we find, for every i , j , and q : $\partial C(A,b)$ $\partial a^{(q)}_{i,j}$ and $\frac{\partial C(A,b)}{\partial A}$ $\partial b_i^{(q)}$

 $_{i,j}$

Mini-batch stochastic gradient descent

Take only $K_0 \leq K$ training inputs x^k , randomly chosen. Denote them as X_i (with desired outputs R_i) and use the modified cost functional

i

$$
C_0(A, b) := \frac{1}{2K_0} \sum_j |f_{A,b}(X_j) - R_j|^2
$$

Improve parameters with $\nabla_{A}C_{0}$ and $\nabla_{b}C_{0}$

Consider the last neuron with $z=\sum_j w_jx_j+b$

The output is $a = \sigma(z)$. The desired output is r.

Assume that the network is terribly wrong

Desired output is $r = 0$. But: $z = 100$ and $a \approx 1$

Derivatives of output a :

$$
\frac{\partial a}{\partial w_j} = \sigma'(z) \frac{\partial z}{\partial w_j} = \sigma'(z) x_j
$$

This expression contains $\sigma'(z)$, which is terribly small!

Our cost function was $C_{\text{old}}(A,b) = \frac{1}{2K} \sum_{k} |f_{A,b}(x^k) - r^k|^2$ Then: All the x^k with terribly wrong results do not contribute to learning $\longrightarrow \frac{\partial f_{A,b}(x^k)}{\partial a}$ $\frac{A,b\left(\frac{x}{y}\right)}{\partial a_{i,j}}$ is small

A smart idea:

The cross-entropy cost function

$$
C = -\frac{1}{K} \sum_{k} [r \ln a + (1 - r) \ln(1 - a)]
$$

 a is the output for x^k and r is the desired output r^k

Is this a cost function?

- For $r \in [0, 1]$: C is always non-negative
- \bullet For $r = 0$ and $r = 1$ holds: $C = 0$ for $a = r$

[Building blocks](#page-2-0) [Cost function and gradients](#page-8-0) [Backpropagation](#page-15-0) [Batches and Cross-entropy](#page-21-0)
0000000 0000000 0000000 000000 000000

The cross-entropy cost function

$$
C = -\frac{1}{K} \sum_{k} [r \ln a + (1 - r) \ln(1 - a)]
$$

With $a=\sigma(z)$ we calculate, suppressing k in $x=x^k$:

$$
\frac{\partial C}{\partial w_j} = \frac{\partial C}{\partial a} \frac{\partial a}{\partial w_j} = -\frac{1}{K} \sum_k \left(\frac{r}{a} - \frac{(1-r)}{1-a} \right) \frac{\partial a}{\partial w_j}
$$

$$
= -\frac{1}{K} \sum_k \left(\frac{r}{a} - \frac{(1-r)}{1-a} \right) \sigma'(z) x_j
$$

$$
= \frac{1}{K} \sum_k \frac{\sigma'(z)}{\sigma(z)(1-\sigma(z))} (\sigma(z) - r) x_j
$$

Miracle:

 $\frac{\sigma'(z)}{\sigma(z)(1-\sigma(z))}=1\qquad\longrightarrow\quad$ small derivative is cancelled!

You have (hopefully) learned:

- Principles of a neural network: Inputs x^k and desired outputs r^k as learning data, weights A , biases b , activation function σ
- \bullet Cost functional C. Learning is steepest decent: Improve the A 's and b 's!
- How to calculate derivatives. How to use backpropagation.
- Mini-batches and cross-entropy cost function

Thank you for participating!