Ben Schweizer

Fakultat fiir Mathematik, TU Dortmund

25. September 2024

o Learn basic neural network vocabulary
o Understand training of a network
o Loose your fear (if there was any)

| am not at all an expert in neural networks!

Literature: | am following the wonderful introduction of Michael
Nielsen from 2019, see http://neuralnetworksanddeeplearning.com/

My main contribution is to adapt the exposition for mathematicians

Building blocks
°

Let the computer recognize the pixel graphic

S0H /92
as the number 504192.

. O H (77 & A3 B3]
We provide: siclziniziEldaeiat
. . a7 [/ E 23R Z R
o the 100 images on the right £ [C (710 A € [0 3 (e [1]
. . . & 7] 7] &l [g] 8] [s7 3] (3] 3]
o ... together with the information: %%E%%%g%%
- - [1 [" [" [1 | [’} m
First row is “0", “4", "“1", “9", ... %%%%%%%
- i " “ 1Al ' ‘ ‘
Second row is "5, “3", ... “lnlolibkilatalnb
Note: The given “5" is not identical to any “5" in the list

Idea of the analyst (not necessarily smart)

Introduce a measure of distance for pixel graphics

Building blocks
®00

An idea of the 1950ies: The perceptron

— A device to convert input into output

o Input z = (21,72, 23) € R3
o Decision parameters |: Weight vector w = (w1, wg, w3) € R3

o Decision parameters Il: A threshold value b € R

£

J'Z%OIItl)llt output — 0 I‘F’UJCL'—‘—bSO
PUE= 01 fw-z+b>0

X3

Building blocks
oeo

An interesting example with only 2 inputs:
Choose w; =wy = —2and b=3

Result for (x1,x2) = (1,1):

2 w-r+b=—-44+3=-1<0, output: 0
72:() ’

2 Result in any other case:
w-x+b>0, output: 1

—— The above perceptron realizes a NAND

Imagine what you can do with this:

inputs output

Building blocks
ooe

Above: Sign function to define the output

' 1 ifz>0 An input z gives the output
sign(z) := ‘
0 else sign(w - x + b)

This makes the analyst happy: Let us define a smoothed version:

Sigmoid function to define the output
| Input = gives output

o(w-z+b)

o is a smooth function on R, monotonically increasing from 0 to 1

Building blocks
®0

Input: 2 € RS
Values in first hidden layer: y = y(1) ¢ R*

Four vectors w of the second column,
each with 6 entries: matrix A(1) ¢ R4x6

Four bias numbers “b" of the second
column give a vector b)) € R*

Simple math for a complicated network

y is calculated as

y=0(A-z+b)

Note: o is applied to each entry of A -z + b separately

Entire network: input = 2 =: y(©), y(1) .= 5(AD . 4O 4 p1)),
y(2) = O'(A(Q) . y(l) + b(2)), output = O'(A('?’) . y(2) + b(?’))

Building blocks
oce

What did we construct?

We constructed a map f : R6 — R with values in [0, 1].

The map depends on the entries of AL A@) AB) p() p(2) pB3)

Idea of neural networks:

We seek a function f : RV — R that realizes “this is a 4"

N': number of pixels for the graphic of one digit, e.g.: N = 28 x 28
Input: 3047492

f maps the first pixel square (“the 5") to something near 0

f maps the second pixel square (“the 0") to something near 0

f maps the third pixel square (“the 4") to something near 1, etc.

Find parameters A A AG) p1) p(2) pB3)
such that f as above realizes the function “this is a 4"

Cost function and gradients
°

For training, we have a finite set of inputs. For some K € N:
Xr = (a1, ..., 25)
We are given the values Ry = (r?, ...,7%) of “correct” outputs

The perfect function would satisfy: f(2*) = r* for all k < K

Cost function (= Error = Loss)

We use the squared ¢?-norm to measure the error,

K
1
C(4,b) = 5 D 1 fap(ah) — kP
k=1

Left to do:

Use the steepest decent algorithm
to find A and b such that C is minimal!

Cost function and gradients
[Jelelelele)

Cost function

1
C(4A,b) := K > [fap(ah) = rFP?
k<K

Aim: Calculate the derivatives

0
Baes C(A,b) and 8_biC(A’ b)

.J|
A

We perform first the “natural” way to calculate all derivatives

Main difficulty: =z is fixed and we differentiate with
respect to parameters, e.g., b\

i
Later, we learn backpropagation — easier and faster to calculate
(and harder to understand)

Cost function and gradients
0®0000

The first layer of the network

y(© := z (the input)
Z(l) = A(l) o y(o) _|_ b(l)’ y(l) = o'(z(l))

We calculate:

o o 04Y o ot
=o'(z,") =0'(z,")y; and =o'(z,")
o] 7 ufg TNy =
For ¢ # i:
o (1) o (1) o (1)
7%1) = a’(zél)) Zfl) =0 and yfl) =0
8@2.7]- 8am ob;

For given z, all these real numbers can be evaluated!

Cost function and gradients
00000

(‘),I/: L)
(){)L’)‘
— the first layer does not know about the second layer

Note: Other derivatives vanish, e.g.:

The second layer of the network

y(©) := 2 (the input)
Z(l) = A(l) o y(o) _|_ b(l)' y(l) = 0'(2(1))

22 .= A®) .y 1 p) output := y@ := 5(2?)

Some derivatives are exactl (2)
ne perve racy Oy _ 1y,
as in the first layer, e.g.: =0'(2)yj

3(122].)

(2)
9y,~

As noted above, e.g.: =0

b,

Cost function and gradients
000e00

There are still interesting derivatives to calculate ...

The second layer of the network

y(© := 2 (the input)

20 = AW 4@ L pO) 5O = (D)
2@ = A@ .y 4 p@ | output := y@ -

I
Q
e
N

—~

N

=
~—

ayf) B 2) 82&2)

Cost function and gradients
©0000®0

In this way, simple evaluations yield all derivatives
(p) (p)

Oy~ dy,
X0 o1

2,7 2

for every input z = y©

Cost function

C(A erAb) — P

k<K

Output = value in last layer: fap(@®) =y

(for p layers; 1 is the only index for the last layer)

A

Cost function and gradients
oooooe

Choose a step size At >0
Let a guess for the network be given: A = A°d and b = p°ld

For the training data (2%);< and (r*).<x and in the point
(A, b) = (A%, p°1), calculate all derivatives
0 ——C(A,b) and 0 ——C(A,b)
da (‘1) 8[)(‘1)

Update/improve coefficients by setting

al(-qj)’new o= (qJ)Old—At g C(A,b)
’ ; 0a\?

b(Q),new — b(q),old A2

i . A

Backpropagation
©00000

Here comes a really smart idea ... OC(A,b)

Introduce the new variables 5 .=
J (9)
azj

This is confusing!

The input z is fixed

qg) and the 5%, but not “directly” the z](-q)

We can change the ag. J

More precisely:

0o 1
sk . _ 7|y(p),k _ k2
J 920 2K !

This is well-defined

We consider layer ¢ as input layer, keep all a and b fixed. We check
how C' changes when zj(-q) is modified with the data of input z*

Backpropagation
©0®0000

The derivative with respect to the last layer (p) can be evaluated
(p)k _ 0C (A, b) 1 N A TN ()
P = = (Fanla®) =) o (:7)

Next aim (suppressing k):
5@ . 0C(A,b)

o 82](.(])
Apply the chain-rule
-1 _ OC(A,D) aC(A,b) 9247
6 =D T2 @ D
0z, 8zjq 62;

J
_25(11]eO'/(Zq 1))

This provides all the 6,7 (calculating “backwards”)!

Backpropagation
00®000

Assume: We have calculated all the
5((1)716 _ 9C(A,b) _ 9 i)k k2
¢ 82-((]) aZKQ) 2K

We obtain all derivatives of C

OC(A,b) ok 929

:Z(;i
k

Similarly:

Backpropagation
00000

We had the following formulas for derivatives:

2,) ys
8aé7q} 4 e
1
00 _ iy, 0
=1l ? 677’ —1
ECay) g9~V
l?] Z’J

q 1) _ Z(g(q) (q 1))

The number of unknowns is very different:
o Backward: Number of nodes of the network
o Forward: Number of nodes times number of edges

Backpropagation
0000e0

The values of the w's. For us: The entries a() of the
matrices
The values of the b's, hence: the bgq)
In our case: The sigmoid o
The values y](-Q) (the z](q) are pre-activations)
Go forward through the network, calculate all the
y](-q) and zJ(Q)

Go backward through the network, calculate all
derivatives, using the values of the Forward-Pass
() OC(Ab
The (5 4 d(<q))
J

The At in the gradient descent scheme

Backpropagation

O0000e

def backprop(self, x, y)
“""Return a tuple '‘(nabla_b, nabla_w)

" representing the
gradient for the cost function C_x. ‘‘nabla_b'' and

nabla w'' are layer-by-layer lists of numpy arrays, similar

to 'self.biases " and " self.weights ."""
nabla_b

nabla w = [np.zeros(w.shape) for w in self.weights]

[np.zeros(b.shape) for b in self.biases]

feedforward

activation = x

store all the activatior

activations = [x] # layer by layer

2s = []1 # list to store all the z vec s, layer by layer
for b, w in zip(self.biases, self.weights)
z = np.dot(w, activation)+b
zs.append (z)
activation = sigmoid(z)
activations.append(activation)

backi

ard pass

delta = self.cost_derivative(activations[-1], y) * \
sigmoid_prime(zs[-1])

nabla_b[-11 = delta

nabla w[-1] = np.dot(delta, activations[-2].transpose())

o

Note that the variable 1 in the loop below used a little

4

n Chapter 2 of the book. Here,

differently to the notation

the

the last layer of neuro

st layer, and so on. It's a renumbering of the

eme in the book, used here to take advantage of the fact

that Python can

*

gative indices

e n

for U in xrange(2, self.num_layers)
z = zs[-1]
sp = signoid_prime(z)
delta = np.dot(self.weights[-L+1].transpose(), delta) * sp
nabla_b[-1] - delta
nabla_w[-1] = np.dot(delta, activations[-1-1].transpose())
return (nabla_b, nabla_w)

Batches and Cross-entropy
®0000

Let's recall what has to be done:
O For every z*: forward-pass to calculate activations
Q For every z*: backward-pass to calculate derivatives
Taking an average % Zle we find, for every i, j, and ¢:

OC/(A,b) OC/(A,b)
@ and @
8ai7qj Bbi

Mini-batch stochastic gradient descent

Take only Ky < K training inputs z*, randomly chosen. Denote
them as X; (with desired outputs R;) and use the modified cost
functional

1
Co(A,b) := 2K, Z | fap(X;) — Rj\2
J

Improve parameters with V 4Cy and V,,Cy

Batches and Cross-entropy
0®000

Consider the last neuron with z = 3 w;z; +b

The output is a = o(z). The desired output is 7.

Assume that the network is terribly wrong
Desired output is 7 = 0. But: z = 100 and a ~ 1

Derivatives of output a:

da , 0z

—_— — —_— I .
du; z aw,; o'(z)x;

This expression contains ¢’(z), which is terribly small!

Batches and Cross-entropy
00®00

Our cost function was Cola(A,b) = 752 >x [fap(z®) — rF|?
Then: All the 2 with terribly wrong results do not

Ofap(xF)

Bar s is small

contribute to learning —>

A smart idea:

The cross-entropy cost function

1
C= % d [rlna+ (1 —7)In(1 — a)]

a is the output for z* and 7 is the desired output r*

Is this a cost function?
Q For r €]0,1]: C is always non-negative
Q Forr=0andr=1holds: C=0fora=r

Batches and Cross-entropy
000®0

The cross-entropy cost function

1
C= % d [rlna+ (1 —7)In(1 — a)]

With a = o(z) we calculate, suppressing k in = = z*:

0C _0C0a 1~ (r (1-7)) da

ow; - Oa ow; K ow;
k

_ _% k <Z _ (1__2)> o' (2);

a 1—a

Miracle:
o'(2)

o(2)(1—o(2))

=1 —— small derivative is cancelled!

Batches and Cross-entropy
ooooe

©

Principles of a neural network: Inputs z* and desired outputs
rk as learning data, weights A, biases b, activation function o

©

Cost functional C. Learning is steepest decent:
Improve the A's and b's!

©

How to calculate derivatives. How to use backpropagation.

©

Mini-batches and cross-entropy cost function

Thank you for participating!

	Building blocks
	Perceptrons
	Math for a neural network

	Cost function and gradients
	Cost function
	Gradients

	Backpropagation
	Batches and Cross-entropy

