
Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Neural Networks

Ben Schweizer

Fakultät für Mathematik, TU Dortmund

25. September 2024

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Aims of this course

Learn basic neural network vocabulary
Understand training of a network
Loose your fear (if there was any)

Disclaimer
I am not at all an expert in neural networks!

Literature: I am following the wonderful introduction of Michael
Nielsen from 2019, see http://neuralnetworksanddeeplearning.com/

My main contribution is to adapt the exposition for mathematicians

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Motivation

Aim
Let the computer recognize the pixel graphic

as the number 504192.

We provide:
the 100 images on the right
... together with the information:
First row is “0”, “4”, “1”, “9”, ...
Second row is “5”, “3”, ...

Note: The given “5” is not identical to any “5” in the list

Idea of the analyst (not necessarily smart)

Introduce a measure of distance for pixel graphics

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Perceptrons I

An idea of the 1950ies: The perceptron
−→ A device to convert input into output

Input x = (x1, x2, x3) ∈ R3

Decision parameters I: Weight vector w = (w1, w2, w3) ∈ R3

Decision parameters II: A threshold value b ∈ R

output =

{
0 if w · x+ b ≤ 0
1 if w · x+ b > 0

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Perceptrons II

An interesting example with only 2 inputs:
Choose w1 = w2 = −2 and b = 3

Result for (x1, x2) = (1, 1):
w · x+ b = −4 + 3 = −1 ≤ 0, output: 0

Result in any other case:
w · x+ b ≥ 0, output: 1

−→ The above perceptron realizes a NAND

Imagine what you can do with this:

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Sigmoid perceptron

Above: Sign function to define the output

sign(z) :=

{
1 if z ≥ 0

0 else

An input x gives the output

sign(w · x+ b)

This makes the analyst happy: Let us define a smoothed version:

Sigmoid function to define the output

σ(z) :=
1

1 + e−z

Input x gives output

σ(w · x+ b)

σ is a smooth function on R, monotonically increasing from 0 to 1

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Architecture: Names and formulas

Input: x ∈ R6

Values in first hidden layer: y = y(1) ∈ R4

Four vectors w of the second column,
each with 6 entries: matrix A(1) ∈ R4×6

Four bias numbers “b” of the second
column give a vector b(1) ∈ R4

Simple math for a complicated network
y is calculated as

y = σ(A · x+ b)

Note: σ is applied to each entry of A · x+ b separately

Entire network: input = x =: y(0), y(1) := σ(A(1) · y(0) + b(1)),
y(2) := σ(A(2) · y(1) + b(2)), output := σ(A(3) · y(2) + b(3))

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Idea of neural networks

What did we construct?

We constructed a map f : R6 → R with values in [0, 1].

The map depends on the entries of A(1), A(2), A(3), b(1), b(2), b(3)

Idea of neural networks:
We seek a function f : RN → R that realizes “this is a 4”:
N : number of pixels for the graphic of one digit, e.g.: N = 28× 28

Input:
f maps the first pixel square (“the 5”) to something near 0
f maps the second pixel square (“the 0”) to something near 0
f maps the third pixel square (“the 4”) to something near 1, etc.

Task

Find parameters A(1), A(2), A(3), b(1), b(2), b(3)

such that f as above realizes the function “this is a 4”

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Cost function

For training, we have a finite set of inputs. For some K ∈ N:

XT = (x1, ..., xK)

We are given the values RT = (r1, ..., rK) of “correct” outputs

The perfect function would satisfy: f(xk) = rk for all k ≤ K

Cost function (= Error = Loss)

We use the squared `2-norm to measure the error,

C(A, b) :=
1

2K

K∑
k=1

|fA,b(x
k)− rk|2

Left to do:

Use the steepest decent algorithm
to find A and b such that C is minimal!

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Gradients

Cost function

C(A, b) :=
1

2K

∑
k≤K
|fA,b(x

k)− rk|2

Aim: Calculate the derivatives
∂

∂ai,j
C(A, b) and

∂

∂bi
C(A, b)

We perform first the “natural” way to calculate all derivatives

Main difficulty: x is fixed and we differentiate with
respect to parameters, e.g., b(q)i

Later, we learn backpropagation −→ easier and faster to calculate
(and harder to understand)

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Derivatives for the first layer

The first layer of the network

y(0) := x (the input)

z(1) := A(1) · y(0) + b(1), y(1) := σ(z(1))

We calculate:

∂y
(1)
`

∂a
(1)
`,j

= σ′(z
(1)
`)

∂z
(1)
`

∂a
(1)
`,j

= σ′(z
(1)
`) y

(0)
j and

∂y
(1)
`

∂b
(1)
`

= σ′(z
(1)
`)

For ` 6= i:

∂y
(1)
`

∂a
(1)
i,j

= σ′(z
(1)
`)

∂z
(1)
`

∂a
(1)
i,j

= 0 and
∂y

(1)
`

∂b
(1)
i

= 0

For given x, all these real numbers can be evaluated!

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Derivatives for the second layer

Note: Other derivatives vanish, e.g.: ∂y
(1)
`

∂b
(2)
`

= 0

−→ the first layer does not know about the second layer

The second layer of the network

y(0) := x (the input)

z(1) := A(1) · y(0) + b(1), y(1) := σ(z(1))

z(2) := A(2) · y(1) + b(2), output := y(2) := σ(z(2))

Some derivatives are exactly
as in the first layer, e.g.:

∂y
(2)
`

∂a
(2)
`,j

= σ′(z
(2)
`) y

(1)
j

As noted above, e.g.: ∂y
(2)
`

∂b
(3)
`

= 0

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

More Derivatives for the second layer

There are still interesting derivatives to calculate ...

The second layer of the network

y(0) := x (the input)

z(1) := A(1) · y(0) + b(1), y(1) := σ(z(1))

z(2) := A(2) · y(1) + b(2), output := y(2) := σ(z(2))

∂y
(2)
`

∂a
(1)
i,j

= σ′(z
(2)
`)

∂z
(2)
`

∂a
(1)
i,j

= σ′(z
(2)
`) a`,i

∂y
(1)
i

∂a
(1)
i,j

Simplify by inserting ?

∂y
(1)
i

∂a
(1)
i,j

= σ′(z
(1)
i) y

(0)
j

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Gradient of the cost function

In this way, simple evaluations yield all derivatives

∂y
(p)
`

∂a
(q)
i,j

and
∂y

(p)
`

∂b
(q)
i

for every input x = y(0)

Cost function

C(A, b) :=
1

2K

∑
k≤K
|fA,b(x

k)− rk|2

Output = value in last layer: fA,b(x
k) = y

(p)
1

(for p layers; 1 is the only index for the last layer)

Result

∂

∂a
(q)
i,j

C(A, b) =
1

K

∑
k≤K

(
fA,b(x

k)− rk
) ∂y

(p)
1

∂a
(q)
i,j

∣∣∣∣∣
x=xk

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Steepest decent algorithm

Choose a step size ∆t > 0

Let a guess for the network be given: A = Aold and b = bold

For the training data (xk)k≤K and (rk)k≤K and in the point
(A, b) = (Aold, bold), calculate all derivatives

∂

∂a
(q)
i,j

C(A, b) and
∂

∂b
(q)
i

C(A, b)

Update/improve coefficients by setting

a
(q),new
i,j := a

(q),old
i,j −∆t

∂

∂a
(q)
i,j

C(A, b)

b
(q),new
i := b

(q),old
i −∆t

∂

∂b
(q)
i

C(A, b)

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Backpropagation

Here comes a really smart idea ...
Introduce the new variables δ

(q)
j :=

∂C(A, b)

∂z
(q)
j

This is confusing!
The input x is fixed
We can change the a(q)j,` and the b(q)j , but not “directly” the z(q)j

More precisely:

δ
(q),k
j :=

∂

∂z
(q)
j

1

2K
|y(p),k1 − rk|2

This is well-defined
We consider layer q as input layer, keep all a and b fixed. We check
how C changes when z(q)j is modified with the data of input xk

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Backpropagation

The derivative with respect to the last layer (p) can be evaluated

δ
(p),k
1 =

∂C(A, b)

∂z
(p)
1

=
1

K

(
fA,b(x

k)− rk
)
σ′(z

(p)
1)

Next aim (suppressing k):

δ
(q)
j :=

∂C(A, b)

∂z
(q)
j

Apply the chain-rule

δ
(q−1)
` =

∂C(A, b)

∂z
(q−1)
`

=
∑
j

∂C(A, b)

∂z
(q)
j

∂z
(q)
j

∂z
(q−1)
`

=
∑
j

δ
(q)
j a

(q)
j,` σ

′(z
(q−1)
`)

This provides all the δ(q)` (calculating “backwards”)!

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Backpropagation

Assume: We have calculated all the

δ
(q),k
i =

∂C(A, b)

∂z
(q)
i

=
∂

∂z
(q)
i

1

2K
|y(p),k1 − rk|2

Claim: This provides all the desired information!

We obtain all derivatives of C

∂C(A, b)

∂a
(q)
i,j

=
∂

∂a
(q)
i,j

1

2K

∑
k

|y(p),k1 − rk|2 =
∑
k

δ
(q),k
i

∂z
(q)
i

∂a
(q)
i,j

=
∑
k

δ
(q),k
i y

(q−1)
j

Similarly:
∂C(A, b)

∂b
(q)
i

=
∑
k

δ
(q),k
i

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Comparison of forward and backward differentiation
We had the following formulas for derivatives:

Forward

∂y
(q)
`

∂a
(q)
`,j

= σ′(z
(q)
`) y

(q−1)
j

∂y
(q)
`

∂a
(q−1)
i,j

= σ′(z
(q)
`) a`,i

∂y
(q−1)
i

∂a
(q−1)
i,j

Backward

δ
(q−1)
` =

∑
j

δ
(q)
j a

(q)
j,` σ

′(z
(q−1)
`)

The number of unknowns is very different:
Backward: Number of nodes of the network
Forward: Number of nodes times number of edges

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Some vocabulary

“weights” The values of the w’s. For us: The entries a(q)i,j of the
matrices

“biases” The values of the b’s, hence: the b(q)i

“activation-function” In our case: The sigmoid σ

“activations” The values y(q)j (the z(q)j are pre-activations)
“Forward-Pass” Go forward through the network, calculate all the

y
(q)
j and z(q)j

“Backward-Pass” Go backward through the network, calculate all
derivatives, using the values of the Forward-Pass

“Output error ” The δ(q)j = ∂C(A,b)

∂z
(q)
j

“learning rate” The ∆t in the gradient descent scheme

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Stochastic mini-batches

Let’s recall what has to be done:
1 For every xk: forward-pass to calculate activations
2 For every xk: backward-pass to calculate derivatives

Taking an average 1
K

∑K
k=1 we find, for every i, j, and q:

∂C(A, b)

∂a
(q)
i,j

and
∂C(A, b)

∂b
(q)
i

Mini-batch stochastic gradient descent

Take only K0 ≤ K training inputs xk, randomly chosen. Denote
them as Xj (with desired outputs Rj) and use the modified cost
functional

C0(A, b) :=
1

2K0

∑
j

|fA,b(Xj)−Rj |2

Improve parameters with ∇AC0 and ∇bC0

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Problem with small derivatives

Consider the last neuron with z =
∑

j wjxj + b

The output is a = σ(z). The desired output is r.

Assume that the network is terribly wrong
Desired output is r = 0. But: z = 100 and a ≈ 1

Derivatives of output a:

∂a

∂wj
= σ′(z)

∂z

∂wj
= σ′(z)xj

This expression contains σ′(z), which is terribly small!

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Cross-entropy cost function

Our cost function was Cold(A, b) = 1
2K

∑
k |fA,b(x

k)− rk|2
Then: All the xk with terribly wrong results do not
contribute to learning −→ ∂fA,b(x

k)
∂ai,j

is small

A smart idea:

The cross-entropy cost function

C = − 1

K

∑
k

[r ln a+ (1− r) ln(1− a)]

a is the output for xk and r is the desired output rk

Is this a cost function?
1 For r ∈ [0, 1]: C is always non-negative
2 For r = 0 and r = 1 holds: C = 0 for a = r

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Derivatives of the cross-entropy cost function

The cross-entropy cost function

C = − 1

K

∑
k

[r ln a+ (1− r) ln(1− a)]

With a = σ(z) we calculate, suppressing k in x = xk:

∂C

∂wj
=
∂C

∂a

∂a

∂wj
= − 1

K

∑
k

(
r

a
− (1− r)

1− a

)
∂a

∂wj

= − 1

K

∑
k

(
r

a
− (1− r)

1− a

)
σ′(z)xj

=
1

K

∑
k

σ′(z)

σ(z)(1− σ(z))
(σ(z)− r)xj

Miracle:
σ′(z)

σ(z)(1− σ(z))
= 1 −→ small derivative is cancelled!

Building blocks Cost function and gradients Backpropagation Batches and Cross-entropy

Conclusions

You have (hopefully) learned:

Principles of a neural network: Inputs xk and desired outputs
rk as learning data, weights A, biases b, activation function σ
Cost functional C. Learning is steepest decent:
Improve the A’s and b’s!
How to calculate derivatives. How to use backpropagation.
Mini-batches and cross-entropy cost function

Thank you for participating!

	Building blocks
	Perceptrons
	Math for a neural network

	Cost function and gradients
	Cost function
	Gradients

	Backpropagation
	Batches and Cross-entropy

