Building blocks

Cost function and gradients 0000000

Backpropagation

Batches and Cross-entropy

Neural Networks

Ben Schweizer

Fakultät für Mathematik, TU Dortmund

25. September 2024

Building blocks	Cost function and gradients	Backpropagation	Batches and Cross-entropy
Aims of this	course		

- Learn basic neural network vocabulary
- Understand training of a network
- Loose your fear (if there was any)

Disclaimer

I am not at all an expert in neural networks!

Literature: I am following the wonderful introduction of Michael Nielsen from 2019, see http://neuralnetworksanddeeplearning.com/

My main contribution is to adapt the exposition for mathematicians

Building blocks ●○○○○○	Cost function and gradients	Backpropagation	Batches and Cross-entropy 00000
Motivation			
Aim			
Let the co	omputer recognize the p	ixel graphic	
	504	192	
as the nur	nber 504192.		
We provide: • the 100) images on the right		2 4 3 1 8 3 7 8 6 9 4 7 9 3 7 7 8 7 9 9 4 7 9 9 1 7 9 1 9 1 7 9 1 9 1 7 9 1 9 1 7 9

 ... together with the information: First row is "0", "4", "1", "9", ... Second row is "5", "3", ...

 9
 7
 1
 2
 Y
 3
 2
 7

 8
 1
 9
 3
 5
 0
 7
 6
 1

 8
 7
 9
 3
 5
 3
 3
 3

 7
 9
 7
 9
 8
 5
 3
 3

 7
 7
 9
 8
 5
 1
 3
 3

 7
 7
 9
 8
 5
 1
 3
 3

 7
 1
 6
 3
 0
 2
 1
 1

 9
 6
 7
 8
 7
 7
 0
 0

 0
 6
 7
 8
 7
 8
 0
 7
 8
 3
 7

 7
 4
 6
 8
 0
 7
 8
 3
 7
 5

Note: The given "5" is not identical to any "5" in the list

Idea of the analyst (not necessarily smart)

Introduce a measure of distance for pixel graphics

Building blocks ○●○○○○	Cost function and gradients	Backpropagation	Batches and Cross-entropy

An idea of the 1950ies: The perceptron

 $\longrightarrow \mathsf{A}$ device to convert input into output

• Input
$$x = (x_1, x_2, x_3) \in \mathbb{R}^3$$

- Decision parameters I: Weight vector $w=(w_1,w_2,w_3)\in\mathbb{R}^3$
- Decision parameters II: A threshold value $b \in \mathbb{R}$

Building blocks ○0●0○0	Cost function and gradients	Backpropagation	Batches and Cross-entropy
Perceptrons			

An interesting example with only 2 inputs: Choose $w_1 = w_2 = -2$ and b = 3

Result for $(x_1, x_2) = (1, 1)$: $w \cdot x + b = -4 + 3 = -1 \le 0$, output: 0

Result in any other case: $w \cdot x + b \ge 0$, output: 1

 \longrightarrow The above perceptron realizes a NAND

Imagine what you can do with this:

Building blocks	Cost function and gradients	Backpropagation	Batches and Cross-entropy
Sigmoid	perceptron		

Above: Sign function to define the output

 $\operatorname{sign}(z) := \begin{cases} 1 & \text{ if } z \ge 0 \\ 0 & \text{ else} \end{cases} \qquad \begin{array}{c} \text{An input } x \text{ gives the output} \\ \operatorname{sign}(w \cdot x + b) \end{cases}$

This makes the analyst happy: Let us define a smoothed version:

 σ is a smooth function on $\mathbb R,$ monotonically increasing from 0 to 1

Input: $x \in \mathbb{R}^6$ Values in first hidden layer: $y = y^{(1)} \in \mathbb{R}^4$ Four vectors w of the second column, each with 6 entries: matrix $A^{(1)} \in \mathbb{R}^{4 \times 6}$ Four bias numbers "b" of the second column give a vector $b^{(1)} \in \mathbb{R}^4$

Simple math for a complicated network

y is calculated as

$$y = \sigma(A \cdot x + b)$$

Note: σ is applied to each entry of $A \cdot x + b$ separately

 $\begin{array}{l} \mbox{Entire network: input} = x =: y^{(0)}, \quad y^{(1)} := \sigma(A^{(1)} \cdot y^{(0)} + b^{(1)}), \\ y^{(2)} := \sigma(A^{(2)} \cdot y^{(1)} + b^{(2)}), \mbox{ output} := \sigma(A^{(3)} \cdot y^{(2)} + b^{(3)}) \end{array}$

Building blocks ○○○○○●	Cost function and gradients	Backpropagation	Batches and Cross-entropy
Idea of neura	al networks		

What did we construct?

We constructed a map $f : \mathbb{R}^6 \to \mathbb{R}$ with values in [0, 1].

The map depends on the entries of $A^{(1)}$, $A^{(2)}$, $A^{(3)}$, $b^{(1)}$, $b^{(2)}$, $b^{(3)}$

Idea of neural networks:

We seek a function $f : \mathbb{R}^N \to \mathbb{R}$ that realizes "this is a 4":

- N: number of pixels for the graphic of one digit, e.g.: $N=28\times 28$ Input: 504192
- f maps the *first* pixel square ("the 5") to something near 0 f maps the *second* pixel square ("the 0") to something near 0 f maps the *third* pixel square ("the 4") to something near 1, etc.

Task

Find parameters $A^{(1)}$, $A^{(2)}$, $A^{(3)}$, $b^{(1)}$, $b^{(2)}$, $b^{(3)}$ such that f as above realizes the function "this is a 4"

Building blocks	Cost function and gradients ●○○○○○○	Backpropagation	Batches and Cross-entropy
Cost funct	ion		

For training, we have a finite set of inputs. For some $K \in \mathbb{N}$:

$$X_T = (x^1, \dots, x^K)$$

We are given the values $R_T = (r^1, ..., r^K)$ of "correct" outputs

The perfect function would satisfy: $f(x^k) = r^k$ for all $k \leq K$

Cost function (= Error = Loss)

We use the squared ℓ^2 -norm to measure the error,

$$C(A,b) := \frac{1}{2K} \sum_{k=1}^{K} |f_{A,b}(x^k) - r^k|^2$$

l eft to do:

Use the steepest decent algorithm to find A and b such that C is minimal!

Building blocks	Cost function and gradients ••••••	Backpropagation	Batches and Cross-entropy
Gradients			

Cost function

$$C(A,b) := \frac{1}{2K} \sum_{k \le K} |f_{A,b}(x^k) - r^k|^2$$

Aim: Calculate the derivatives

$$rac{\partial}{\partial a_{i,j}}C(A,b) \quad \text{and} \quad rac{\partial}{\partial b_i}C(A,b)$$

We perform first the "natural" way to calculate all derivatives

Main difficulty: x is fixed and we differentiate with respect to parameters, e.g., $b_i^{(q)}$

Later, we learn *backpropagation* \longrightarrow easier and faster to calculate (and harder to understand)

Building blocks	Cost function and gradients ○0●0000	Backpropagation	Batches and Cross-entropy
Derivatives f	or the first layer		

The first layer of the network

$$y^{(0)} := x$$
 (the input)

$$z^{(1)} := A^{(1)} \cdot y^{(0)} + b^{(1)}, \qquad \qquad y^{(1)} := \sigma(z^{(1)})$$

We calculate:

$$\frac{\partial y_{\ell}^{(1)}}{\partial a_{\ell,j}^{(1)}} = \sigma'(z_{\ell}^{(1)}) \frac{\partial z_{\ell}^{(1)}}{\partial a_{\ell,j}^{(1)}} = \sigma'(z_{\ell}^{(1)}) y_{j}^{(0)} \quad \text{ and } \quad \frac{\partial y_{\ell}^{(1)}}{\partial b_{\ell}^{(1)}} = \sigma'(z_{\ell}^{(1)})$$

For $\ell \neq i$:

$$\frac{\partial y_\ell^{(1)}}{\partial a_{i,j}^{(1)}} = \sigma'(z_\ell^{(1)}) \frac{\partial z_\ell^{(1)}}{\partial a_{i,j}^{(1)}} = 0 \quad \text{ and } \quad \frac{\partial y_\ell^{(1)}}{\partial b_i^{(1)}} = 0$$

For given x, all these real numbers can be evaluated!

Building blocks	Cost function and gra	dients Backpropaga 000000	tion Batches and Cross	s-entropy
Derivatives	for the secor	nd layer		
Note: Of	her derivatives values \longrightarrow the first lay	anish, e.g.: $rac{\partial y_\ell^{(1)}}{\partial b_\ell^{(2)}} =$ er does not know a	0 bout the second layer	r
The seco	nd layer of the ne	etwork		
$y^{(0)} := x$	(the input)			
$z^{(1)} := A$	$y^{(1)} \cdot y^{(0)} + b^{(1)}$,	$y^{(1)}:=\sigma(z^{(1)})$		
$z^{(2)} := A$	$(2) \cdot y^{(1)} + b^{(2)}.$	output := $u^{(2)}$:=	$\sigma(z^{(2)})$	

Some derivatives are exactly as in the first layer, e.g.:

As noted above, e.g.:
$$rac{\partial y_\ell^{(2)}}{\partial b_\ell^{(3)}}=0$$

$$\frac{\partial y_{\ell}^{(2)}}{\partial a_{\ell,j}^{(2)}} = \sigma'(z_{\ell}^{(2)}) \, y_j^{(1)}$$

Building blocks	Cost function and gradients	Backpropagation	Batches and Cross-entropy
Mara Dariu	stives for the secon	d lavar	

Viore Derivatives for the second layer

There are still interesting derivatives to calculate ...

The second layer of the network $y^{(0)} := x$ (the input) $z^{(1)} := A^{(1)} \cdot y^{(0)} + b^{(1)}, \quad y^{(1)} := \sigma(z^{(1)})$ $z^{(2)} := A^{(2)} \cdot y^{(1)} + b^{(2)}, \quad \text{output} := y^{(2)} := \sigma(z^{(2)})$

$$\frac{\partial y_{\ell}^{(2)}}{\partial a_{i,j}^{(1)}} = \sigma'(z_{\ell}^{(2)}) \frac{\partial z_{\ell}^{(2)}}{\partial a_{i,j}^{(1)}} = \sigma'(z_{\ell}^{(2)}) a_{\ell,i} \frac{\partial y_{i}^{(1)}}{\partial a_{i,j}^{(1)}}$$

Simplify by inserting ?

$$\frac{\partial y_i^{(1)}}{\partial a_{i,j}^{(1)}} = \sigma'(z_i^{(1)}) \, y_j^{(0)}$$

O00000	Cost function and gradients ○○○○○●○	Backpropagation	Batches and Cross-entropy
Gradient o	f the cost function		

In this way, simple evaluations yield all derivatives

$$\frac{\partial y_{\ell}^{(p)}}{\partial a_{i,j}^{(q)}} \quad \text{and} \quad \frac{\partial y_{\ell}^{(p)}}{\partial b_{i}^{(q)}} \quad \text{for every input } x = y^{(0)}$$

Cost function

$$C(A,b) := \frac{1}{2K} \sum_{k \le K} |f_{A,b}(x^k) - r^k|^2$$

Output = value in last layer:

$$f_{A,b}(x^k) = y_1^{(p)}$$

(for p layers; 1 is the only index for the last layer)

Result

$$\frac{\partial}{\partial a_{i,j}^{(q)}} C(A,b) = \frac{1}{K} \sum_{k \le K} \left(f_{A,b}(x^k) - r^k \right) \left. \frac{\partial y_1^{(p)}}{\partial a_{i,j}^{(q)}} \right|_{x=x^k}$$

Building blocks	Cost function and gradients ○○○○○○●	Backpropagation	Batches and Cross-entropy
Steepest	decent algorithm		

Choose a step size $\Delta t > 0$

Let a guess for the network be given: $A = A^{\text{old}}$ and $b = b^{\text{old}}$

For the training data $(x^k)_{k\leq K}$ and $(r^k)_{k\leq K}$ and in the point $(A,b)=(A^{\rm old},b^{\rm old})$, calculate all derivatives

$$\frac{\partial}{\partial a_{i,j}^{(q)}} C(A,b) \quad \text{ and } \quad \frac{\partial}{\partial b_i^{(q)}} C(A,b)$$

Update/improve coefficients by setting

$$\begin{aligned} a_{i,j}^{(q),\text{new}} &:= a_{i,j}^{(q),\text{old}} - \Delta t \, \frac{\partial}{\partial a_{i,j}^{(q)}} C(A,b) \\ b_i^{(q),\text{new}} &:= b_i^{(q),\text{old}} - \Delta t \, \frac{\partial}{\partial b_i^{(q)}} C(A,b) \end{aligned}$$

000000	0000000	00000	00000	
Backpro	pagation			
Here c Introd	comes a really smart uce the new variables	idea s $\delta_j^{(q)} := rac{\partial C(A,b)}{\partial z_z^{(q)}}$	<u>))</u>	

This is confusing!

The input x is fixed We can change the $a_{j,\ell}^{(q)}$ and the $b_j^{(q)}$, but not "directly" the $z_j^{(q)}$

More precisely:

$$\delta_j^{(q),k} := \frac{\partial}{\partial z_j^{(q)}} \frac{1}{2K} |y_1^{(p),k} - r^k|^2$$

This is well-defined

We consider layer q as input layer, keep all a and b fixed. We check how C changes when $z_j^{(q)}$ is modified with the data of input x^k

Building blocks	Cost function and gradients	Backpropagation 0●0000	Batches and Cross-entropy
Deelunuanana	tion		

Backpropagation

The derivative with respect to the last layer (p) can be evaluated

$$\delta_1^{(p),k} = \frac{\partial C(A,b)}{\partial z_1^{(p)}} = \frac{1}{K} \left(f_{A,b}(x^k) - r^k \right) \sigma'(z_1^{(p)})$$

Next aim (suppressing k):

$$\delta_j^{(q)} := \frac{\partial C(A, b)}{\partial z_j^{(q)}}$$

Apply the chain-rule

$$\begin{split} \delta_{\ell}^{(q-1)} &= \frac{\partial C(A,b)}{\partial z_{\ell}^{(q-1)}} = \sum_{j} \frac{\partial C(A,b)}{\partial z_{j}^{(q)}} \frac{\partial z_{j}^{(q)}}{\partial z_{\ell}^{(q-1)}} \\ &= \sum_{j} \delta_{j}^{(q)} \, a_{j,\ell}^{(q)} \, \sigma'(z_{\ell}^{(q-1)}) \end{split}$$

This provides all the $\delta_{\ell}^{(q)}$ (calculating "backwards")!

Building blocks	Cost function and gradients	Backpropagation 00●000	Batches and Cross-entropy
Backpropaga	tion		

Assume: We have calculated all the

$$\delta_i^{(q),k} = \frac{\partial C(A,b)}{\partial z_i^{(q)}} = \frac{\partial}{\partial z_i^{(q)}} \frac{1}{2K} |y_1^{(p),k} - r^k|^2$$

Claim: This provides all the desired information!

We obtain all derivatives of C

$$\begin{aligned} \frac{\partial C(A,b)}{\partial a_{i,j}^{(q)}} &= \frac{\partial}{\partial a_{i,j}^{(q)}} \frac{1}{2K} \sum_{k} |y_1^{(p),k} - r^k|^2 = \sum_{k} \delta_i^{(q),k} \ \frac{\partial z_i^{(q)}}{\partial a_{i,j}^{(q)}} \\ &= \sum_{k} \delta_i^{(q),k} \ y_j^{(q-1)} \end{aligned}$$

Similarly:

$$\frac{\partial C(A,b)}{\partial b_i^{(q)}} = \sum_k \delta_i^{(q),k}$$

Building blocks

Cost function and gradients

Backpropagation

Batches and Cross-entropy

Comparison of forward and backward differentiation

We had the following formulas for derivatives:

Forward

$$\begin{aligned} \frac{\partial y_{\ell}^{(q)}}{\partial a_{\ell,j}^{(q)}} &= \sigma'(z_{\ell}^{(q)}) \, y_{j}^{(q-1)} \\ \frac{\partial y_{\ell}^{(q)}}{\partial a_{i,j}^{(q-1)}} &= \sigma'(z_{\ell}^{(q)}) \, a_{\ell,i} \, \frac{\partial y_{i}^{(q-1)}}{\partial a_{i,j}^{(q-1)}} \end{aligned}$$

Backward

$$\delta_{\ell}^{(q-1)} = \sum_{j} \delta_{j}^{(q)} \, a_{j,\ell}^{(q)} \, \sigma'(z_{\ell}^{(q-1)})$$

The number of unknowns is very different:

- Backward: Number of nodes of the network
- Forward: Number of nodes times number of edges

Building blocks	Cost function and gradients	Backpropagation 0000●0	Batches and Cross-entropy 00000
Some vocab	ularv		

"weights" The values of the w 's. For us: The entries $a_{i,j}^{\left(q\right)}$ of the matrices

"biases" The values of the b's, hence: the $b_i^{(q)}$

"activation-function" In our case: The sigmoid σ

"activations" The values $y_j^{(q)}$ (the $z_j^{(q)}$ are pre-activations) "Forward-Pass" Go forward through the network, calculate all the $y_j^{(q)}$ and $z_j^{(q)}$

"Backward-Pass" Go backward through the network, calculate all derivatives, using the values of the Forward-Pass

"Output error " The
$$\delta_j^{(q)} = rac{\partial C(A,b)}{\partial z_i^{(q)}}$$

"learning rate" The Δt in the gradient descent scheme

Building	blocks

def backprop(self, x, v): """Return a tuple ``(nabla b, nabla w)`` representing the gradient for the cost function C x. ``nabla b`` and ``nabla w`` are layer-by-layer lists of numpy arrays, similar to ``self.biases`` and ``self.weights``.""" nabla b = [np.zeros(b.shape) for b in self.biases] nabla w = [np.zeros(w.shape) for w in self.weights] # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases, self.weights): z = np.dot(w, activation)+b zs.append(z) activation = sigmoid(z) activations.append(activation) # backward pass delta = self.cost derivative(activations[-1], y) * \ sigmoid prime(zs[-1]) nabla b[-1] = delta nabla w[-1] = np.dot(delta, activations[-2].transpose()) # Note that the variable l in the loop below is used a little # differently to the notation in Chapter 2 of the book. Here, # l = 1 means the last laver of neurons. l = 2 is the # second-last layer, and so on. It's a renumbering of the # scheme in the book, used here to take advantage of the fact # that Python can use negative indices in lists. for l in xrange(2, self.num layers): z = zs[-1]sp = sigmoid_prime(z) delta = np.dot(self.weights[-l+1].transpose(), delta) * sp nabla b[-l] = delta nabla w[-l] = np.dot(delta, activations[-l-1].transpose()) return (nabla b, nabla w)

Building blocks	Cost function and gradients	Backpropagation	Batches and Cross-entropy ●0000
Stochastic m	nini-batches		

Let's recall what has to be done:

• For every x^k : forward-pass to calculate activations • For every x^k : backward-pass to calculate derivatives Taking an average $\frac{1}{K} \sum_{k=1}^{K}$ we find, for every *i*, *j*, and *q*: $\frac{\partial C(A, b)}{\partial C(A, b)} = \frac{\partial C(A, b)}{\partial C(A, b)}$

$$rac{\partial C(A,b)}{\partial a_{i,j}^{(q)}}$$
 and $rac{\partial C(A,b)}{\partial b_i^{(q)}}$

Mini-batch stochastic gradient descent

Take only $K_0 \leq K$ training inputs x^k , randomly chosen. Denote them as X_j (with desired outputs R_j) and use the modified cost functional

$$C_0(A,b) := \frac{1}{2K_0} \sum_j |f_{A,b}(X_j) - R_j|^2$$

Improve parameters with $\nabla_A C_0$ and $\nabla_b C_0$

Building blocks	Cost function and gradients	Backpropagation	Batches and Cross-entropy 0000
Problem wit	h small derivatives		

Consider the last neuron with $z = \sum_{j} w_j x_j + b$

The output is $a = \sigma(z)$. The desired output is r.

Assume that the network is terribly wrong

Desired output is r = 0. But: z = 100 and $a \approx 1$

Derivatives of output *a*:

$$\frac{\partial a}{\partial w_j} = \sigma'(z) \frac{\partial z}{\partial w_j} = \sigma'(z) x_j$$

This expression contains $\sigma'(z)$, which is terribly small!

Building blocks	Cost function and gradients	Backpropagation	Batches and Cross-entropy
Cross-entrop	y cost function		

Our cost function was $C_{\text{old}}(A,b) = \frac{1}{2K} \sum_k |f_{A,b}(x^k) - r^k|^2$ Then: All the x^k with terribly wrong results do not contribute to learning $\longrightarrow \frac{\partial f_{A,b}(x^k)}{\partial a_{i,j}}$ is small

A smart idea:

The cross-entropy cost function

$$C = -\frac{1}{K} \sum_{k} \left[r \ln a + (1 - r) \ln(1 - a) \right]$$

a is the output for x^k and r is the desired output r^k

Is this a cost function?

- For $r \in [0, 1]$: C is always non-negative
- For r = 0 and r = 1 holds: C = 0 for a = r

Building blocks

Cost function and gradients 0000000

Backpropagation

Batches and Cross-entropy

ļ

Derivatives of the cross-entropy cost function

The cross-entropy cost function

$$C = -\frac{1}{K} \sum_{k} \left[r \ln a + (1 - r) \ln(1 - a) \right]$$

With $a = \sigma(z)$ we calculate, suppressing k in $x = x^k$:

$$\frac{\partial C}{\partial w_j} = \frac{\partial C}{\partial a} \frac{\partial a}{\partial w_j} = -\frac{1}{K} \sum_k \left(\frac{r}{a} - \frac{(1-r)}{1-a}\right) \frac{\partial a}{\partial w_j}$$
$$= -\frac{1}{K} \sum_k \left(\frac{r}{a} - \frac{(1-r)}{1-a}\right) \sigma'(z) x_j$$
$$= \frac{1}{K} \sum_k \frac{\sigma'(z)}{\sigma(z)(1-\sigma(z))} (\sigma(z) - r) x_j$$

Miracle:

$$rac{\sigma'(z)}{\sigma(z)(1-\sigma(z))}=1 \qquad \longrightarrow \quad ext{small derivative is cancelled}$$

Building blocks 000000	Cost function and gradients	Backpropagation	Batches and Cross-entropy 0000●
Conclusions			

You have (hopefully) learned:

- Principles of a neural network: Inputs x^k and desired outputs r^k as learning data, weights A, biases b, activation function σ
- Cost functional *C*. Learning is steepest decent: Improve the *A*'s and *b*'s!
- How to calculate derivatives. How to use backpropagation.
- Mini-batches and cross-entropy cost function

Thank you for participating!