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Maxwell’s equations in a wave-guide
Given: ω > 0, µ = µ(x), ε = ε(x), (fh, fe) = (fh, fe)(x)

Goal: Solve
curlE = iωµH + fh

curlH = −iωεE + fe

in a waveguide geometry: Ω = R× S ⊂ R3

S ⊂ R2 a bounded Lipschitz domain
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Aim of this talk: Sketch existence result using only

▶ Floquet-Bloch transformation

▶ (standard) functional analysis

S. Fliss and P. Joly. Solutions of the time-harmonic wave equation in periodic
waveguides: asymptotic behaviour and radiation condition. Arch. Ration. Mech.
Anal., 219(1):349–386, 2016.



The simplest model equation

An ordinary differential equation on R
Given f : R → C with support in [−R,R] and ω > 0,
find u : R → C solving

∂2xu+ ω2u = f

Solution: For some a1, a2, b1, b2 ∈ C:
For x > R, the solution is u(x) = a1e

iωx + a2e
−iωx

For x < −R, the solution is u(x) = b1e
iωx + b2e

−iωx

Time-dependent interpretation might be:
u(x, t) = eiωxe−iωt = eiω(x−t) → right-going wave

Radiation condition: One might want, e.g., a2 = b1 = 0

Robin conditions in x = R and x = −R provide the solution u

Note: In general, u ̸∈ H1(R,C)



Reformulation of Maxwell’s equations
Goal: For data ω > 0, µ, ε, f = (fh, fe), solve

curlE = iωµH + fh

curlH = −iωεE + fe

with the boundary conditions for perfect conductors: E × ν = 0 on ∂Ω

Periodicity, positivity: ε, µ ∈ L∞(Ω) strictly positive, 2π-periodic in x1

Decay property of the right hand side:
∫
Ω
(1 + x21)

2 |f(x)|2dx <∞

Weak formulation with u := H as the only unknown

∫
Ω

{
1

ε
curlu · curl ϕ̄− ω2µu ϕ̄

}
=

∫
Ω

{
1

ε
fe curl ϕ̄− iωfh ϕ̄

}
for every ϕ ∈ H1(Ω,C3) with bounded support

This already encodes the boundary conditions

Useful function space:

u ∈ H(curl ,Ω) :=
{
u ∈ L2(Ω,C3)

∣∣ curlu ∈ L2(Ω,C3)
}



Floquet-Bloch transformation

Periodicity cell: W := (0, 2π)× S for Ω = R× S

Quasimoments: α ∈ I := [−1/2, 1/2]

Floquet-Bloch transform

FFB : L2(Ω) → L2
(
W × I

)
, u = u(x) 7→ û = û(x, α)

For smooth functions u with compact support, x = (x1, x̃):

û((x1, x̃), α) :=
∑
ℓ∈Z

u(x1 + 2πℓ, x̃) e−iℓ2πα

Inverse: For arbitrary y ∈ Ω, reconstruct with

u(y) =

∫
I

û(y, α) dα

With these formulas also: FFB is an isomorphism with bounded inverse

F−1
FB : L2

(
I,H1

α(W )
)
→ H1(Ω)



Floquet-Bloch transformed equation

W := (0, 2π)× S , α ∈ I := [−1/2, 1/2]

Function space: X := Hper(curl ,W )

The Maxwell operator

For every α ∈ I, a linear operator Lα : X → X is defined by

⟨Lαv, φ⟩X :=

∫
W

1

ε
curl (veiαx1) · curl (φeiαx1)− ω2µ v · φ̄

The right hand side (fh, fe) is represented with a family yα ∈ X

Equivalent formulation

Maxwell is solved with u ∈ H1(Ω) when we show: For almost every
α ∈ I, there is v(·, α) ∈ X solving

Lαv(·, α) = yα

and there holds v ∈ L2(I,X)



Critical α-values
Trivial case: When L−1

α exists for all α, then v(·, α) = L−1
α (yα)

Critical α-values

For α ∈ I let Y α be the space of α-quasiperiodic solutions to the
homogeneous problem. Critical values:

A := {α ∈ [−1/2, 1/2] |Y α ̸= {0}}

−→ Y α consists of propagating modes ϕ (simple example: ϕ(x) = eiωx)

Energy transport is related to hermitean form (→ ”Poynting vector”):

Q(u, ϕ) := i

∫
W

1

ε

[
(curlu× ϕ̄)− (curl ϕ̄× u)

]
· e1

u a propagating mode

u transports energy to the right ⇐⇒ Q(u, u) > 0
u transports energy to the left ⇐⇒ Q(u, u) < 0

Assumption

For every 0 ̸= ϕ ∈ Y α, the map Q(·, ϕ) : Y α → C is non-trivial



Functional analysis

Definition (Regular C1-family)

(Lα)α is a regular C1-family when:

1. Lα is a self-adjoint Fredholm operator with index 0 (for every α)

2. The operators depend differentiable on α

3. The derivatives ∂αLα are invertible on the kernel for every α

Theorem (Functional analysis, Kirsch et al.)

Let (Lα)α be a regular C1-family of operators
Let α 7→ yα ∈ Lα(X) be a Lipschitz map into the image
Then v(·, α) = L−1

α (yα) is uniformly bounded

Proof with implicit function theorem

Information regarding Maxwell: (Lα)α is a regular C1-family
Relevant step: Fredholm property of Lα

Invertibility of ∂αLα on the kernel follows from Q-assumption
(Loosely speaking: Q is the derivative ∂αLα)



Decomposition of solutions
Problem: In general, yα ̸∈ Lα(X)

Indeed, we want this! When yα ∈ Lα(X) for all α, we find u ∈ L2(Ω)!

Cut-off function ρ+ with limits 1 and 0
ρ− := 1− ρ+

1

r−r 0

ρ+(x1)

x1

(ϕℓ)ℓ the quasiperiodic
homogeneous solutions

For every ℓ: Either
ρℓ = ρ+ or ρℓ = ρ−

Definition (Propagating part and radiation condition)

(i) Propagating part. For complex coefficients (aℓ)1≤ℓ≤L,

uprop :=
∑
ℓ=1

aℓ ρℓ ϕℓ

is the propagating wave function corresponding to a ∈ CL

(ii) Radiation condition. A solution u ∈ Hloc(curl ,Ω) satisfies the
radiation condition, when there exists a ∈ CL such that

urad := u− uprop ∈ H(curl ,Ω)



Existence result

Theorem (Existence and uniqueness of solutions to the radiation problem)

Let S, ω, ε, µ, fe and fh be given, let the Q-assumption be satisfied.
Then Maxwell has a unique solution u ∈ Hloc(curl ,Ω) satisfying the
radiation condition. With C = C(S, ε, µ, ω, ρ±) holds

∥urad∥H(curl ,Ω) + ∥uprop|W ∥H(curl ,W ) ≤ C
(
∥fe∥L2

∗(Ω) + ∥fh∥L2
∗(Ω)

)
Sketch of proof: Recall that pre-factors (aℓ)ℓ ∈ CL determine uprop

urad := u− uprop satisfies a new problem

Show that aℓ ∈ C can be chosen such that the right-hand side for
urad-problem satisfies the orthogonality condition yα ∈ Lα(X) for all α

Functional analysis theorem yields the solution urad ∈ H1(Ω)

Info: The coefficients (aℓ)ℓ are given by

aℓ =
2πi

|Q(ϕℓ, ϕℓ)|
(
⟨ε−1fe, curlϕℓ⟩L2(Ω) − ⟨iωfh, ϕℓ⟩L2(Ω)

)



Fredholm property

Here: α ∈ I is fixed, any dependence on α is suppressed

W = (0, 2π)× S, ε, µ ∈ L∞(Ω) real valued and positive

Function space: Hα(curl ,W ) with scalar product

⟨u, φ⟩H(curl ,W ) :=

∫
W

{
1

ε
curlu · curl φ̄+ µu · φ̄

}
Operator: L : Hα(curl ,W ) → Hα(curl ,W ) defined by

⟨Lu, φ⟩H(curl ,W ) =

∫
W

{
1

ε
curlu · curl φ̄− ω2µu · φ̄

}
Helmholtz decomposition: Hα(curl ,W ) = D ⊕G:

D :=

{
u ∈ Hα(curl ,W )

∣∣∣∣ ∫
W

µu · ∇ψ = 0 for all ψ ∈ H1
α(W )

}
G :=

{
v ∈ Hα(curl ,W )

∣∣ ∃ψ ∈ H1
α(W ) : v = ∇ψ

}
−→ H(curl ,W )-orthogonal complements



Fredholm property

Lemma (Fredholm property)

The operator L is a self-adjoint Fredholm operator with index 0.

Consider v ∈ G and Lv ∈ X and u ∈ D:

⟨Lv, u⟩H(curl ,W ) = −ω2⟨µv, u⟩L2(W ) = −ω2⟨v, µu⟩L2(W ) = 0

This provides L|G : G→ G. Similarly: L|D : D → D.
Hence, on Hα(curl ,W ) = D ⊕G:

L =

(
L|D 0
0 L|G

)

L|D : D → D is a Fredholm operator with index 0: One shows that
K := L− id is a compact operator D → D.

On G, the operator L is nothing but multiplication with −ω2, hence a
Fredholm operator with index 0.



Y = B

Two function spaces of modes

The span of quasiperiodic solutions

Y :=

J⊕
j=1

Yj ⊂ H(curl ,W ) , identified with Y ⊂ Hloc(curl ,Ω)

The space of bounded solutions, ∥U∥sL := supr∈2πZ ∥U |Wr
∥L2(Wr):

B := {U ∈ Hloc(curl ,Ω) |U solves Maxwell for f = 0 , ∥U∥sL <∞}

Theorem (Characterization of bounded homogeneous solutions)

When the Q-assumption is satisfied, then

Y = B



Proof of Y = B

We consider U ∈ B and want to show U ∈ Y

Let f = fh with compact support be arbitrary

For f , let the Maxwell solution be u = uprop + urad with (aℓ)1≤ℓ≤L

With cut-off function ϑR, use UϑR as a test-function∫
Ω

{
1

ε
curlu · curl (ŪϑR)− ω2µu · ŪϑR

}
= −iω

∫
Ω

f · Ū

Evaluate the left hand side using that U is a homogeneous solution:
With cℓ depending on U and ϕℓ, but not on f , we find

L∑
ℓ=1

cℓ aℓ = −iω ⟨f, U⟩L2(Ω)

We now recall: aℓ is a linear combination of ⟨f, ϕk⟩L2(Ω)

Result, since f was arbitrary: U is a linear combination of the ϕk



Locally perturbed media

Theorem (Fredholm alternative for perturbed media)

Let µper, εper ∈ L∞(Ω) be periodic functions with positive lower bounds

Let µ, ε ∈ L∞(Ω) be given as compact perturbations of µper, εper
We assume positive lower bounds also for µ, ε

Let the Q-assumption be satisfied for µper, εper

Let u = 0 be the only solution to the homogeneous perturbed system

Then there exists a unique radiating solution for every (fe, fh)

Hint on the proof: With operators D : X → Y and ξ,Q : Y → Y

D :=

(
0 curl

−curl 0

)
, ξ :=

(
εper 0
0 µper

)
, Q :=

(
qε 0
0 qµ

)
Maxwell’s equations take the form

(D + iω ξ)u = iω Qu+ f

Show Fredholm property for compactly supported qε, qµ
−→ Helmholtz decompositions



Conclusions

The radiation problem for time harmonic Maxwell’s equations in
wave-guides can be solved

▶ Method: Functional analysis (implicit function theorem)

▶ Underlying operator is Fredholm (for fixed quasi-moment α)

Further results:

▶ Compactly perturbed media

▶ Y = B

Thank you!
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