Time harmonic Maxwell's equations in periodic waveguides

Wave phenomena conference Karlsruhe 2025

Andreas Kirsch, Ben Schweizer

25. February 2025

Maxwell's equations in a wave-guide Given: $\omega > 0$, $\mu = \mu(x)$, $\varepsilon = \varepsilon(x)$, $(f_h, f_e) = (f_h, f_e)(x)$

$$\operatorname{curl} E = i\omega\mu H + f_h$$
$$\operatorname{curl} H = -i\omega\varepsilon E + f_e$$

in a waveguide geometry: $\Omega = \mathbb{R} \times S \subset \mathbb{R}^3$ $S \subset \mathbb{R}^2$ a bounded Lipschitz domain

Goal: Solve

Aim of this talk: Sketch existence result using only

- Floquet-Bloch transformation
- (standard) functional analysis

S. Fliss and P. Joly. Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition. Arch. Ration. Mech. Anal., 219(1):349–386, 2016.

The simplest model equation

An ordinary differential equation on $\ensuremath{\mathbb{R}}$

Given $f : \mathbb{R} \to \mathbb{C}$ with support in [-R, R] and $\omega > 0$, find $u : \mathbb{R} \to \mathbb{C}$ solving

$$\partial_x^2 u + \omega^2 u = f$$

Solution: For some $a_1, a_2, b_1, b_2 \in \mathbb{C}$: For x > R, the solution is $u(x) = a_1 e^{i\omega x} + a_2 e^{-i\omega x}$ For x < -R, the solution is $u(x) = b_1 e^{i\omega x} + b_2 e^{-i\omega x}$

Time-dependent interpretation might be: $u(x,t) = e^{i\omega x}e^{-i\omega t} = e^{i\omega(x-t)} \rightarrow$ right-going wave

Radiation condition: One might want, e.g., $a_2 = b_1 = 0$

Robin conditions in x = R and x = -R provide the solution u

Note: In general, $u \notin H^1(\mathbb{R}, \mathbb{C})$

Reformulation of Maxwell's equations

Goal: For data $\omega > 0$, μ , ε , $f = (f_h, f_e)$, solve

$$\operatorname{curl} E = i\omega\mu H + f_h$$
$$\operatorname{curl} H = -i\omega\varepsilon E + f_e$$

with the boundary conditions for perfect conductors: $E \times \nu = 0$ on $\partial \Omega$ Periodicity, positivity: $\varepsilon, \mu \in L^{\infty}(\Omega)$ strictly positive, 2π -periodic in x_1 Decay property of the right hand side: $\int_{\Omega} (1 + x_1^2)^2 |f(x)|^2 dx < \infty$

Weak formulation with u := H as the only unknown

$$\int_{\Omega} \left\{ \frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \bar{\phi} - \omega^2 \mu \, u \, \bar{\phi} \right\} = \int_{\Omega} \left\{ \frac{1}{\varepsilon} f_e \operatorname{curl} \bar{\phi} - i \omega f_h \, \bar{\phi} \right\}$$

for every $\phi \in H^1(\Omega, \mathbb{C}^3)$ with bounded support This already encodes the boundary conditions

Useful function space:

$$u \in H(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega, \mathbb{C}^3) \middle| \operatorname{curl} u \in L^2(\Omega, \mathbb{C}^3) \right\}$$

Floquet-Bloch transformation

$$\label{eq:periodicity cell: } \begin{split} & {\rm Periodicity \ cell: \ } W:=(0,2\pi)\times S \qquad {\rm for} \ \Omega=\mathbb{R}\times S \\ & {\rm Quasimoments: \ } \alpha\in I:=[-1/2,1/2] \end{split}$$

Floquet-Bloch transform

$$\mathcal{F}_{\rm FB}: L^2(\Omega) \to L^2(W \times I), \qquad u = u(x) \mapsto \hat{u} = \hat{u}(x, \alpha)$$

For smooth functions u with compact support, $x = (x_1, \tilde{x})$:

$$\hat{u}((x_1, \tilde{x}), \alpha) := \sum_{\ell \in \mathbb{Z}} u(x_1 + 2\pi\ell, \tilde{x}) e^{-i\ell 2\pi\alpha}$$

Inverse: For arbitrary $y \in \Omega$, reconstruct with

$$u(y) = \int_I \hat{u}(y, \alpha) \, d\alpha$$

With these formulas also: $\mathcal{F}_{\rm FB}$ is an isomorphism with bounded inverse

$$\mathcal{F}_{\mathrm{FB}}^{-1}: L^2(I, H^1_\alpha(W)) \to H^1(\Omega)$$

Floquet-Bloch transformed equation

$$W:=(0,2\pi) imes S$$
 , $lpha\in I:=[-1/2,1/2]$

Function space: $X := H_{per}(curl, W)$

The Maxwell operator

For every $\alpha \in I$, a linear operator $L_{\alpha}: X \to X$ is defined by

$$\langle L_{\alpha}v,\varphi\rangle_{X} := \int_{W} \frac{1}{\varepsilon} \operatorname{curl}\left(ve^{i\alpha x_{1}}\right) \cdot \operatorname{curl}\left(\overline{\varphi e^{i\alpha x_{1}}}\right) - \omega^{2}\mu v \cdot \overline{\varphi}$$

The right hand side (f_h, f_e) is represented with a family $y_\alpha \in X$

Equivalent formulation

Maxwell is solved with $u \in H^1(\Omega)$ when we show: For almost every $\alpha \in I$, there is $v(\cdot, \alpha) \in X$ solving

$$L_{\alpha}v(\cdot,\alpha) = y_{\alpha}$$

and there holds $v \in L^2(I, X)$

Critical α -values

Trivial case: When L_{α}^{-1} exists for all α , then $v(\cdot, \alpha) = L_{\alpha}^{-1}(y_{\alpha})$

Critical α -values

For $\alpha \in I$ let Y^{α} be the space of α -quasiperiodic solutions to the homogeneous problem. Critical values:

$$\mathcal{A} := \{ \alpha \in [-1/2, 1/2] \, | \, Y^{\alpha} \neq \{0\} \}$$

 $\longrightarrow Y^{\alpha}$ consists of propagating modes ϕ (simple example: $\phi(x) = e^{i\omega x}$)

Energy transport is related to hermitean form (\rightarrow "Poynting vector"):

$$Q(u,\phi) := i \int_{W} \frac{1}{\varepsilon} \left[(\operatorname{curl} u \times \bar{\phi}) - (\operatorname{curl} \bar{\phi} \times u) \right] \cdot e_{1}$$

u a propagating mode

 $\begin{array}{ll} u \text{ transports energy to the right } & \Longleftrightarrow & Q(u,u) > 0 \\ u \text{ transports energy to the left } & \Longleftrightarrow & Q(u,u) < 0 \end{array}$

Assumption

For every $0\neq\phi\in Y^{\alpha},$ the map $Q(\cdot,\phi):Y^{\alpha}\rightarrow\mathbb{C}$ is non-trivial

Functional analysis

Definition (Regular C^1 -family)

 $(L_{\alpha})_{\alpha}$ is a regular C^1 -family when:

- 1. L_{α} is a self-adjoint Fredholm operator with index 0 (for every α)
- 2. The operators depend differentiable on α
- 3. The derivatives $\partial_{lpha} L_{lpha}$ are invertible on the kernel for every lpha

Theorem (Functional analysis, Kirsch et al.)

Let $(L_{\alpha})_{\alpha}$ be a regular C^{1} -family of operators Let $\alpha \mapsto y_{\alpha} \in L_{\alpha}(X)$ be a Lipschitz map into the image Then $v(\cdot, \alpha) = L_{\alpha}^{-1}(y_{\alpha})$ is uniformly bounded

Proof with implicit function theorem

Information regarding Maxwell: $(L_{\alpha})_{\alpha}$ is a regular C^1 -family Relevant step: Fredholm property of L_{α} Invertibility of $\partial_{\alpha}L_{\alpha}$ on the kernel follows from Q-assumption (Loosely speaking: Q is the derivative $\partial_{\alpha}L_{\alpha}$)

Decomposition of solutions

Problem: In general, $y_{\alpha} \notin L_{\alpha}(X)$

Indeed, we want this! When $y_{\alpha} \in L_{\alpha}(X)$ for all α , we find $u \in L^{2}(\Omega)$!

 x_1

Cut-off function ρ_+ with limits 1 and 0 $\rho_- := 1 - \rho_+$ $1 \uparrow \rho_+(x_1)$

n

 $(\phi_\ell)_\ell$ the quasiperiodic homogeneous solutions

For every ℓ : Either $\rho_{\ell} = \rho_+$ or $\rho_{\ell} = \rho_-$

Definition (Propagating part and radiation condition)

(i) Propagating part. For complex coefficients $(a_{\ell})_{1 \leq \ell \leq L}$,

 \dot{r}

$$u^{\rm prop} := \sum_{\ell=1} a_\ell \, \rho_\ell \, \phi_\ell$$

is the propagating wave function corresponding to $a \in \mathbb{C}^L$ (*ii*) Radiation condition. A solution $u \in H_{\text{loc}}(\text{curl}, \Omega)$ satisfies the radiation condition, when there exists $a \in \mathbb{C}^L$ such that

$$u^{\mathrm{rad}} := u - u^{\mathrm{prop}} \in H(\mathrm{curl}, \Omega)$$

Theorem (Existence and uniqueness of solutions to the radiation problem)

Let S, ω , ε , μ , f_e and f_h be given, let the Q-assumption be satisfied. Then Maxwell has a unique solution $u \in H_{loc}(curl, \Omega)$ satisfying the radiation condition. With $C = C(S, \varepsilon, \mu, \omega, \rho_{\pm})$ holds

 $\|u^{\mathrm{rad}}\|_{H(\mathrm{curl},\Omega)} + \|u^{\mathrm{prop}}\|_{W}\|_{H(\mathrm{curl},W)} \le C \left(\|f_e\|_{L^2_*(\Omega)} + \|f_h\|_{L^2_*(\Omega)}\right)$

Sketch of proof: Recall that pre-factors $(a_\ell)_\ell \in \mathbb{C}^L$ determine u^{prop} $u^{\text{rad}} := u - u^{\text{prop}}$ satisfies a new problem

Show that $a_{\ell} \in \mathbb{C}$ can be chosen such that the right-hand side for u^{rad} -problem satisfies the orthogonality condition $y_{\alpha} \in L_{\alpha}(X)$ for all α Functional analysis theorem yields the solution $u^{\mathrm{rad}} \in H^{1}(\Omega)$

Info: The coefficients $(a_\ell)_\ell$ are given by

$$a_{\ell} = \frac{2\pi i}{|Q(\phi_{\ell}, \phi_{\ell})|} \left(\langle \varepsilon^{-1} f_e, \operatorname{curl} \phi_{\ell} \rangle_{L^2(\Omega)} - \langle i\omega f_h, \phi_{\ell} \rangle_{L^2(\Omega)} \right)$$

Fredholm property

Here: $\alpha \in I$ is fixed, any dependence on α is suppressed $W = (0, 2\pi) \times S$, $\varepsilon, \mu \in L^{\infty}(\Omega)$ real valued and positive Function space: $H_{\alpha}(\operatorname{curl}, W)$ with scalar product

$$\langle u, \varphi \rangle_{H(\operatorname{curl}, W)} := \int_W \left\{ \frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \bar{\varphi} + \mu \, u \cdot \bar{\varphi} \right\}$$

Operator: $L: H_{\alpha}(\operatorname{curl}, W) \to H_{\alpha}(\operatorname{curl}, W)$ defined by

$$\langle Lu, \varphi \rangle_{H(\operatorname{curl}, W)} = \int_{W} \left\{ \frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \bar{\varphi} - \omega^{2} \mu \, u \cdot \bar{\varphi} \right\}$$

Helmholtz decomposition: $H_{\alpha}(\operatorname{curl}, W) = D \oplus G$:

$$D := \left\{ u \in H_{\alpha}(\operatorname{curl}, W) \middle| \int_{W} \mu \, u \cdot \nabla \psi = 0 \text{ for all } \psi \in H^{1}_{\alpha}(W) \right\}$$
$$G := \left\{ v \in H_{\alpha}(\operatorname{curl}, W) \middle| \exists \psi \in H^{1}_{\alpha}(W) : v = \nabla \psi \right\}$$
$$\downarrow H(\operatorname{curl}, W) \text{ orthogonal complete}$$

 $\longrightarrow H(\operatorname{curl}, W)$ -orthogonal complements

Fredholm property

Lemma (Fredholm property)

The operator L is a self-adjoint Fredholm operator with index 0.

Consider $v \in G$ and $Lv \in X$ and $u \in D$:

$$\langle Lv, u \rangle_{H(\operatorname{curl},W)} = -\omega^2 \langle \mu v, u \rangle_{L^2(W)} = -\omega^2 \langle v, \mu u \rangle_{L^2(W)} = 0$$

This provides $L|_G : G \to G$. Similarly: $L|_D : D \to D$. Hence, on $H_{\alpha}(\operatorname{curl}, W) = D \oplus G$:

$$L = \begin{pmatrix} L|_D & 0\\ 0 & L|_G \end{pmatrix}$$

 $L|_D: D \to D$ is a Fredholm operator with index 0: One shows that K := L - id is a compact operator $D \to D$.

On G, the operator L is nothing but multiplication with $-\omega^2$, hence a Fredholm operator with index 0.

Y = B

Two function spaces of modes

The span of quasiperiodic solutions

$$Y \ := \ \bigoplus_{j=1}^J Y_j \subset H(\operatorname{curl}, W) \,, \quad \text{identified with} \quad Y \ \subset \ H_{\operatorname{loc}}(\operatorname{curl}, \Omega)$$

The space of bounded solutions, $||U||_{sL} := \sup_{r \in 2\pi\mathbb{Z}} ||U||_{W_r} ||_{L^2(W_r)}$:

 $B := \{ U \in H_{\text{loc}}(\text{curl}, \Omega) \, | \, U \text{ solves Maxwell for } f = 0 \,, \, \|U\|_{sL} < \infty \}$

Theorem (Characterization of bounded homogeneous solutions)

When the Q-assumption is satisfied, then

$$Y = B$$

Proof of Y = B

We consider $U \in B$ and want to show $U \in Y$ Let $f = f_h$ with compact support be arbitrary For f, let the Maxwell solution be $u = u^{\text{prop}} + u^{\text{rad}}$ with $(a_\ell)_{1 \leq \ell \leq L}$ With cut-off function ϑ_R , use $U\vartheta_R$ as a test-function

$$\int_{\Omega} \left\{ \frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \left(\bar{U} \vartheta_R \right) - \omega^2 \mu \, u \cdot \bar{U} \vartheta_R \right\} = -i\omega \int_{\Omega} f \cdot \bar{U}$$

Evaluate the left hand side using that U is a homogeneous solution: With c_ℓ depending on U and ϕ_ℓ , but not on f, we find

$$\sum_{\ell=1}^{L} c_{\ell} \, a_{\ell} = -i\omega \, \langle f, U \rangle_{L^{2}(\Omega)}$$

We now recall: a_ℓ is a linear combination of $\langle f, \phi_k \rangle_{L^2(\Omega)}$ Result, since f was arbitrary: U is a linear combination of the ϕ_k

Locally perturbed media

Theorem (Fredholm alternative for perturbed media)

Let $\mu_{per}, \varepsilon_{per} \in L^{\infty}(\Omega)$ be periodic functions with positive lower bounds Let $\mu, \varepsilon \in L^{\infty}(\Omega)$ be given as compact perturbations of $\mu_{per}, \varepsilon_{per}$ We assume positive lower bounds also for μ, ε Let the Q-assumption be satisfied for $\mu_{per}, \varepsilon_{per}$ Let u = 0 be the only solution to the homogeneous perturbed system Then there exists a unique radiating solution for every (f_e, f_h)

Hint on the proof: With operators $D:X\to Y$ and $\xi,Q:Y\to Y$

$$D := \begin{pmatrix} 0 & \operatorname{curl} \\ -\operatorname{curl} & 0 \end{pmatrix}, \quad \xi := \begin{pmatrix} arepsilon_{\operatorname{per}} & 0 \\ 0 & \mu_{\operatorname{per}} \end{pmatrix}, \quad Q := \begin{pmatrix} q_{arepsilon} & 0 \\ 0 & q_{\mu} \end{pmatrix}$$

Maxwell's equations take the form

$$(D+i\omega\,\xi)u=i\omega\,Qu+f$$

Show Fredholm property for compactly supported $q_{\varepsilon}, q_{\mu} \longrightarrow$ Helmholtz decompositions

Conclusions

The radiation problem for time harmonic Maxwell's equations in wave-guides can be solved

- Method: Functional analysis (implicit function theorem)
- Underlying operator is Fredholm (for fixed quasi-moment α)

Further results:

Compactly perturbed media

 $\blacktriangleright Y = B$

Thank you!

Recent articles:

Kirsch A and Schweizer B (2024), "Time harmonic Maxwell's equations in periodic waveguides", Arch. Rat. Mech. Anal.

Kirsch A and Schweizer B (2024), "Periodic wave-guides revisited: Radiation conditions, limiting absorption principles, and the space of boundes solutions", Mathematical Methods in the Applied Sciences