Modelling

Porous Media and Plasticity - Homogenization for

Equations with Hysteresis

Ben Schweizer

TU Dortmund

Banff, 30.8.2010



Modelling
[ leJe]e]

Modelling subsurface flow

Describe the flow of water in unsaturated porous media

domain Qc RN

saturation s:Qx (0,7) — R
pressure p:Qx(0,T)—R

velocity v:Qx(0,T)— RY

Darcy law v=—k(s)Vp
conservation law Os+V-v=0

some relation between p and s

We combine these to the evolution equation

Os =V - (k(s)Vp).
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Microscopic Analysis |

Variable radius

=00,

0 0~<0 @)
SO
relation p <> S depends on pores

Tube-Model -
v/

R > , At a given saturation s, pores of
Fluid 1 L Fluid 2 . )
: radius do(s) must be filled.

d radius of the tube 6 contact angle This needs the pressure
H = R~ curvature 3 surface tension
p=BH = F(d) P =pe(s)

4

Richards equation:

Os =V - (k(s)V[pe(s)])
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Microscopic Analysis Il: Play-type capillary hysteresis

In reality, the radius of the tubes Resulting model

is oscillatory.
D € peo(s) + v sign(9;s)
5 with the multi-valued sign-function,
— ‘ sign(0) = [-1,1].

+1
This implies that an interval of

pressures is allowed for one
saturation,

P € [p1,p2] =1 peo(s) + [=7,7].

@ S., A stochastic model for fronts in porous

with the rule: upper/lower value media, Ann. Mat. Pura Appl. 2005
for increasing/decreasing
saturation @ S., Laws for the capillary pressure ...,

SIAM J. Math. Analysis, 2005
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Existence results for the hysteresis model

P € pe,o(s) + v sign(9d;s) Method of proof: Regularization.
Hysteresis relation p to s Discretize Q@ — h >0
5 Po(S) Approximate ¢ = sign™' —  § >0
Vs (.)

=
S
Vi
v
Theorem

Let T > 0 and let initial data sy be

compgt:b/e. Ther.1 there .eXI..StS a |_/veak 95" = %([ph,a — ashd _ b/7)
solution of the differential inclusion s s s
0:s = Ap with Agyp™® =1s([p™” —as™® = b]/7)

p € as + b+ vy sign(d;s)
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Plasticity equations

domain QCRY

displacement  wu: Q x (0,T) — RY
strain €:Qx(0,T) — RVXN
stress o:Qx(0,T) —» RVN*N

y

pOiu=V-o+f
e=3(Vu+ (Vu)'h)
€ and o

conservation law
strain relation
a relation between

v

Linear elasticity

One uses the simplest choice,

oc=A- e

The observation in plasticity is: the
material flowing beyond some stress

(o2

Melan-Prager

One-dimensional relation

ae € o — v sign(0ie — BO,0).
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Hysteresis problems of plasticity and hydrology

Wave equation with hysteresis

pOiu = 0,0 + f
Ozu = € + Bo

ae € Ko — 7y sign(de).

«, 3,7, k are parameters.

Richards equation with hysteresis

Bts = Ap
p € as + b+ v sign(;s)

a,b,~y are parameters.

v

Energy estimate, Plasticity. Testing with J.u gives, for f =0

1
8,55/;)|6tu|2z—/a&g@mu:—/a&g(e—f—ﬁo)

1 9 o Y.
€ —3t§/5|0| _/[E6+ ;Slgn(ate)} e

__al 2 gl [ 0 [
= 8t2//6|0| 8t2//$|6| /H|3t€|
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Hysteresis problems of plasticity and hydrology

Wave equation with hysteresis

pOiu = 0,0 + f
O,u =€+ fo
ae € Ko — 7y sign(dqe).

Richards equation with hysteresis

Bts = Ap
p € as + b+ v sign(;s)

a, b,y are parameters.

«, 3,7, k are parameters.

v

Energy estimate, Richards. Multiplication of the first equation with p and
integration over () gives

/|VP|2 = - /p Os € /[as + b+ sign(9;5)]9;s

zat/{g|s|2+bs}+/7|8ts|.
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The fundamental question

We are interested in composite materials
(periodic or stochastic).

The material parameters are constant in S
each cell, chosen randomly in each cell.

The grid-spacing is € > 0.

Fundamental question of homogenization

If u® are solutions to the e-problems, and u® — u*.
What is the equation for u*?

© Two-scale convergence (Allaire, ...)

@ Energy method (Tartar, ...)

B.S. Homogenization of the Prager model in one-dimensional plasticity. Continuum Mechanics and
Thermodynamics 20(8), 2009.

B.S. Averaging of flows with capillary hysteresis in stochastic porous media. European Journal of Applied
Mathematics 18, 2007.
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Main result on plasticity

Let u® be a solution to the problem with oscillating parameters,
O*uf = 0p0° + f
B, = €€ + o
af€® € K°0° — 7sign(0,€®).

Idea: Material label y € I := [0, 1]. The measure € M(I) denotes the

probability distribution of materials.
The strain in material y € I is w(z,t,y). Problem (P,) is

Pu = 0,0" + f
Dpu™ = / w(y) du(y) + 80"

I
a(y)w(y) € K(y)o™ —y(y)sign(Qw(y)) p—ae yel

where 3* is the expected value of (3.

Theorem (S. 2009, Cont. Mech. Therm.)

Under ergodicity assumptions, the functions u® converge to the unique
solution u* almost surely.
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Main result in hydrology: Expected pressure

The pressure has bounded gradients, hence — p® without oscillations.
The saturation s, instead, oscillates.

A new quantity: The expected capillary pressure
w® 1= a8 + b° = pco(s°).

1. case: saturation decreases. Then
C _pE4nE . . 2. case: Variable saturation
5 — B g oscilatory 2. case: Variable saturation

) Expected pressure
The expected pressure is

we 1= a®st +b° =p° +9° w(z,y,t) :=a®s" +b°

... at places with v = y.

v

w encodes the saturation history of the porous medium!
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Equations for w

Averaged equations. Conservation law:
Os =V - (K*Vp) Yz € Q,

where K* determined by a cell-problem.
The saturation is reconstructed from w via

sty [HEBDZE g,
I

a*

where b* = (b°) and a* = (1/a%) "
The hysteresis relation holds point-wise,

p(z) € w(z,y) +y sign(drw(z,y)) Vo e Q,y€[0,1].

Theorem (S. 2004/07, Eur. J. Appl. Math.)

The equations posess a unique weak solution (s,w, p).
For solutions (s¢,p®) of the stochastic e-problem we have

s —s, p°—p almost surely.
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Scanning curves for the effective equations.

The presence of the history varia-

ble w alters the scanning curves.

Hysteresis-cell-problem and
operator-cell-problem decouple:

Play-type hysteresis averages to
Prandtl-Ishlinskii-hysteresis

Francu and Krejci (1999): 1-dim. deterministic wave-eq.
Visintin (02-), Alber (09): n-dim. deterministic static

S.-Veneroni (09): n-dim. deterministic wave-eq.

The effective model has scanning
curves that are qualitatively as in
the experiment.

Desirable for realistic
modelling!
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The “correct” description of porous media:

@ x1:R?Y— [ =10,1] describes the distribution of material, it is
chosen stochastically, e.g. constant in unit cubes.

© Heterogeneous media: x. : @ — [0, 1],z — x1(x/e)
o Parameters depend on the material: a®(z) = ao(x:(x)) etc.

Method of oscillating test-functions for plasticity. Knowing the
homogenized solution (u*, o*, w), we may construct

w® (t,x) == w(t, z, x*(x)).
We expect w® to be similar to €°.

E(f)=1/|auf—au*|2+1/“_'6|€e_ws|2+1/55|05_0*2
/ 2 Ja ' ' 2 Jo K5 2 Jo

A direct calculation gives

o< [ {([oatauts) o) - (5 = 320" b t0° - )



Mathematical tools
@00

Stochastic choice of x;

To describe stochastic media, one chooses Y1 stochastically.
Let i be the distribution of values of x;.

Loose definition of ergodicity

The stochastic process is ergodic, if spatial averages yield the expected
values (almost surely).

The ergodicity of the medium implies

Definition (Ergodicity property)

Let g € L9(I,du) for ¢ > 1 and let g° : @ — R be defined as

Then g° converges weakly to a constant function,

g°(z) — (g) in LY(Q) almost surely.
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Two-scale ergodicity

Definition (Two-scale ergodicity property)

We say that the stochastic process and a function g : 2 x I — R satisfy
the two-scale ergodicity property with q € [1,00) if the following holds.
Consider g* : @ — R and (g) : Q@ — R,

@) = o, (@), {9} (@) = / o(e, ) du(y).

Then

g° — (g) fore — 0in L9(Q) almost surely.

The pair is two-scale ergodic when  is ergodic and
@ g is continuous or

@ u has finite support (finite number of materials).

This is the case in the discrete approximation!
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Conclusions

@ The homogenized system is the one you had guessed in the first
place ... once you understood the system well.

@ Method of oscillating test-functions is very powerful for rigorous
results

@ Technical problems are BV-controls and two-scale ergodicity.
Further steps:

@ fingering in porous media

© improved existence in porous media hysteresis

o periodic coefficients for plasticity in R™ (— Marco Veneroni)

Open problem:

© Stochastic coefficients for plasticity in R™

Thank you!
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