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Gravity fronts: fingering and hysteresis Fingering

Fingering

Flow in a porous
medium

wet sand

dry sand

Question

How does the water
travel downwards ?

Experiments

From: Selker, Parlange, Steenhuis,

Fingered Flow in Two Dimensions. Part 2.

Predicting Finger Moisture Profile, 1992.

Numerics

Numerics by A. Rätz

The model includes static and dynamic

hysteresis
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Gravity fronts: fingering and hysteresis Fingering

Experimental observations

We need a well-prepared medium: very dry sand

fingers travel with constant speed

the saturation profile is not monotone in x inside the finger

Mathematics

The standard Richards equation

defines an L1-contraction (Otto)

L2-stability (Duijn, Pieters, Raats)

Question:

How do we modify Richards equation to obtain fingering?
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Gravity fronts: fingering and hysteresis Modelling flow

Modelling flow in porous media

Our aim is to describe the flow of water in unsaturated porous media.

Variables

domain Ω ⊂ RN
saturation s : Ω× (0, T )→ R
pressure p : Ω× (0, T )→ R
velocity v : Ω× (0, T )→ RN

Equations

Darcy law v = −k(s)[∇p+ ex]
conservation law ∂ts+∇ · v = 0
some relation p to s

We combine these to the evolution equation

∂ts = ∇ · (k(s)[∇p+ ex]).
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Gravity fronts: fingering and hysteresis Modelling flow

(Standard) Pore Analysis

At a given saturation s, pores of
radius d0(s) must be filled

Needs the pressure

p = pc(s)

Tube-Model

2d

θ

R

Fluid 1 Fluid 2

d radius of the tube θ contact angle

H = R−1 curvature β surface tension

p = βH = F (d)

Richards equation:

∂ts = ∇ · (k(s)[∇pc(s) + ex])

Additional effect: Hysteresis We better keep

Richards equation with hysteresis

∂ts = ∇ · (k(s)[∇p+ ex]) and a relation p to s
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Gravity fronts: fingering and hysteresis Play-type hysteresis

Hysteresis in porous media

... is important in fingering!

From: Selker, Parlange, Steenhuis, 1992

Hassanizadeh and Gray, Thermodynamic basis of capillary pressure ..., 1993

Beliaev and Hassanizadeh, A theoretical model of hysteresis ..., 2001

For fixed saturation s, demand p ∈ [p1, p2] =: pc(s) + [−γ, γ]

Hysteresis model

∂ts = ∇ · (k(s)[∇p+ ex])

p ∈ pc(s) + γ sign(∂ts)

s

p  (s)
c,0

p
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Analysis for the hysteresis equation Existence results

Existence results

Idea:
Discretize (h) and regularize (δ)

∂ts
h,δ = ψδ([p

h,δ − pc(sh,δ)]/γ)

∆p̃h,δ = ψδ([p
h,δ − pc(sh,δ)]/γ)

ψδ(.)
Main task: s has
time-regularity and
p has space
regularity.
Derive compactness
from these facts!

Semi-linear problem, B.S. 2007

p ∈ pc(s) + γ sign(∂ts), ∂ts = ∆p

Fully non-linear problem, A.Lamacz, A.Rätz, B.S. 2011

p ∈ pc(s) + γ sign(∂ts) + τ∂ts, τ > 0
∂ts = ∇ · (k(s)[∇p+ ex])

Two-phase flow, J.Koch, A.Rätz, B.S. 2013

p1 − p2 ∈ pc(s) + γ sign(∂ts) + τ∂ts, τ > 0
∂tsj = ∇ · (kj(sj)[∇pj + gj ])
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Analysis for the hysteresis equation Homogenization

Homogenization result

Criticism of the model:

1 vertical scanning curves

2 “no loops”

s

p  (s)
c,0

p

Theorem [S. 2007]

Assume that many play-type hysteresis materials are homogenized.
Then: The evolution equation remains

∂ts = k∗∆p.

Homogenization leads to a Prandtl-Ishlinskii hysteresis relation,

s(x, t) =

∫
I

p−1
c (w(x, y, t)) dy, I = [0, 1]

p(x) ∈ w(x, y) + γ(y) sign(∂tw(x, y)) ∀y ∈ I

Nonlinear homogenization result for two-phase flow in [P. Henning, M. Ohlberger, B.S.] M3AS, 2013
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Analysis for the hysteresis equation Stability in a special case

Can the model explain fingering?

Proposition (Stability)

Consider Richards equation with static hysteresis,

∂ts = ∇ · (k(s)[∇p+ ex]) + f

p ∈ pc(s) + γ sign(∂ts)

We assume that either γ = 0 or that k > 0 is independent of s. This
system generates an L1-contraction: For two solutions sj and sources fj
there holds, for all t2 > t1,∫

Ω
|s1 − s2|(x, t2) dx ≤

∫
Ω
|s1 − s2|(x, t1) dx+

∫ t2

t1

∫
Ω
|f1 − f2|(x, t) dx dt

Theorem (Instability) [S. 2012]

System is no L1-contraction for γ > 0 and k = k(s).
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Instability results and fingering in numerical tests A one-dimensional free boundary problem

Proof of instability — one-dimensional analysis

Boundary condition: High pressure until t = 0, lower pressure afterwards

The switching pressure condition

coincides with experimental description

high saturation near upper boundary after short time

A free boundary problem: X(t) and q(t) free parameters
Right domain: hysteresis blocks evolution

k(s1)[∂xp+ 1] = q on {(x, t) : X(t) < x < L+}
p(X(t) + 0, t) = pc(s1(X(t))) + γ

p(L+, t) = p+

Left domain: standard Richards evolution

∂ts = ∂x (k(s)[∂xpc(s) + 1]) on {(x, t) : x < X(t)}
p(X(t)− 0, t) = pc(s1(X(t))) + γ, p(L−, t) = p−

(k(s)[∂xp+ 1]) (X(t)− 0, t) = q
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Instability results and fingering in numerical tests A one-dimensional free boundary problem

Proof of the instability theorem

1 small perturbation of the initial values remains present for all times

2 below high saturation, the front travels faster — for all times

Conclusion: Richards equation with hysteresis and gravity is unstable

* Rigorous proof, based on a free boundary problem

* No heterogeneity of the medium assumed

* Instability for hysteresis and non-monotone boundary data
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Instability results and fingering in numerical tests A one-dimensional free boundary problem

Onset of fingering

Two-dimensional numerical results for Richards equation:
static hysteresis, τ = 0.

discrete saturations at t = t0 = −2, t ≈ 509, t ≈ 2508, t ≈ 8487.

Result

static hysteresis alone can create an instability

All numerical results by A. Rätz, TU Dortmund
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Instability results and fingering in numerical tests One-dimensional numerical analysis

Profiles in one space dimension, no dynamic factor

Pressure and saturation profiles without dynamic term, τ = 10−3

Time instances: t = 0, t = 2 · 10−6, t = 170
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Instability results and fingering in numerical tests One-dimensional numerical analysis

Profiles in one space dimension, τ > 0

Pressure and saturation profiles with dynamic term, τ = 5
Time instances: t = 0, t = 2 · 10−6, t = 170
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Instability results and fingering in numerical tests Two-dimensional numerics for τ > 0

Numerical results without static hysteresis

Evolution of saturation values for τ = 0.5, no static hysteresis.

Richards equation, time instances t ≈ 56, t ≈ 114, t ≈ 201, t ≈ 406

deterministic perturbation of the initial values
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Instability results and fingering in numerical tests Two-dimensional numerics for τ > 0

Numerical results with static hysteresis

Evolution of saturation values for τ = 0.5 with static hysteresis

Richards equation, time instances t ≈ 56, t ≈ 114, t ≈ 201, t ≈ 406
deterministic perturbation of the initial values
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Instability results and fingering in numerical tests Two-dimensional numerics for τ > 0

Conclusions:

Fingering for Richards flow with hysteresis and dynamic effect

hysteresis models for τ > 0 are well-posed

front solutions for hysteresis and τ = 0 are unstable

static hysteresis & τ > 0 produces fingering

Thank you!
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