Instability effects in hysteresis models for porous media flow

SIAM GS 2013 — Padova

Ben Schweizer

TU Dortmund

June 17, 2013

Fingering

Flow in a porous medium

Question

How does the water travel downwards?

Experiments

Fig. 5. Development of unstable wetting front in experiment 2.

From: Selker, Parlange, Steenhuis, Fingered Flow in Two Dimensions. Part 2. Predicting Finger Moisture Profile, 1992.

Numerics

Numerics by A. Rätz

The model includes static and dynamic hysteresis

Experimental observations

- We need a well-prepared medium: very dry sand
- fingers travel with constant speed
- the saturation profile is not monotone in x inside the finger

Mathematics

The standard Richards equation

- defines an L¹-contraction (Otto)
- L²-stability (Duijn, Pieters, Raats)

Question:

How do we modify Richards equation to obtain fingering?

Modelling flow in porous media

Our aim is to describe the flow of water in unsaturated porous media.

Variables

 $\begin{array}{ll} \text{domain} & \Omega \subset \mathbb{R}^N \\ \text{saturation} & s: \Omega \times (0,T) \to \mathbb{R} \\ \text{pressure} & p: \Omega \times (0,T) \to \mathbb{R} \\ \text{velocity} & v: \Omega \times (0,T) \to \mathbb{R}^N \end{array}$

Equations

 $\begin{array}{ll} \text{Darcy law} & v = -k(s)[\nabla p + e_x] \\ \text{conservation law} & \partial_t s + \nabla \cdot v = 0 \\ \text{some relation} & p \text{ to } s \end{array}$

We combine these to the evolution equation

$$\partial_t s = \nabla \cdot (k(s)[\nabla p + e_x]).$$

(Standard) Pore Analysis

At a given saturation s, pores of radius $d_0(s)$ must be filled

Needs the pressure

$$p = p_c(s)$$

Richards equation:

$$\partial_t s = \nabla \cdot (k(s)[\nabla p_c(s) + e_x])$$

Additional effect: Hysteresis

We better keep

Richards equation with hysteresis

$$\partial_t s = \nabla \cdot (k(s)[\nabla p + e_x])$$
 and a relation p to s

Hysteresis in porous media

... is important in fingering!

From: Selker, Parlange, Steenhuis, 1992

- Hassanizadeh and Gray, Thermodynamic basis of capillary pressure ..., 1993
- Beliaev and Hassanizadeh, A theoretical model of hysteresis ..., 2001

For fixed saturation s, demand $p \in [p_1, p_2] =: p_c(s) + [-\gamma, \gamma]$

Hysteresis model

$$\partial_t s = \nabla \cdot (k(s)[\nabla p + e_x])$$

$$p \in p_c(s) + \gamma \operatorname{sign}(\partial_t s)$$

Existence results

Idea:

Discretize (h) and regularize (δ)

$$\partial_t s^{h,\delta} = \psi_{\delta}([p^{h,\delta} - p_c(s^{h,\delta})]/\gamma)$$

$$\Delta \tilde{p}^{h,\delta} = \psi_{\delta}([p^{h,\delta} - p_c(s^{h,\delta})]/\gamma)$$

Main task: s has time-regularity and p has space regularity. Derive compactness from these facts!

Semi-linear problem, B.S. 2007

$$p \in p_c(s) + \gamma \operatorname{sign}(\partial_t s), \qquad \partial_t s = \Delta p$$

Fully non-linear problem, A.Lamacz, A.Rätz, B.S. 2011

$$\begin{aligned} p &\in p_c(s) + \gamma \operatorname{\mathbf{sign}}(\partial_t s) + \tau \partial_t s, & \tau &> 0 \\ \partial_t s &= \nabla \cdot (k(s)[\nabla p + e_x]) \end{aligned}$$

Two-phase flow, J.Koch, A.Rätz, B.S. 2013

$$p_1 - p_2 \in p_c(s) + \gamma \operatorname{sign}(\partial_t s) + \tau \partial_t s, \qquad \tau > 0$$

 $\partial_t s_j = \nabla \cdot (k_j(s_j)[\nabla p_j + g_j])$

Homogenization result

Criticism of the model:

- vertical scanning curves
- "no loops"

Theorem [S. 2007]

Assume that many **play-type hysteresis** materials are homogenized.

Then: The evolution equation remains

$$\partial_t s = k^* \Delta p.$$

Homogenization leads to a Prandtl-Ishlinskii hysteresis relation,

$$\begin{split} s(x,t) &= \int_I p_c^{-1}(w(x,y,t)) \ dy, \qquad I = [0,1] \\ p(x) &\in w(x,y) + \gamma(y) \ \mathbf{sign}(\partial_t w(x,y)) \quad \forall y \in I \end{split}$$

Nonlinear homogenization result for two-phase flow in [P. Henning, M. Ohlberger, B.S.] M3AS, 2013

Can the model explain fingering?

Proposition (Stability)

Consider Richards equation with static hysteresis,

$$\partial_t s = \nabla \cdot (k(s)[\nabla p + e_x]) + f$$

 $p \in p_c(s) + \gamma \operatorname{sign}(\partial_t s)$

We assume that **either** $\gamma=0$ **or** that k>0 is independent of s. This system generates an L^1 -contraction: For two solutions s_j and sources f_j there holds, for all $t_2>t_1$,

$$\int_{\Omega} |s_1 - s_2|(x, t_2) \, dx \le \int_{\Omega} |s_1 - s_2|(x, t_1) \, dx + \int_{t_1}^{t_2} \int_{\Omega} |f_1 - f_2|(x, t) \, dx \, dt$$

Theorem (Instability) [S. 2012]

System is no L^1 -contraction for $\gamma > 0$ and k = k(s).

Proof of instability — one-dimensional analysis

Boundary condition: High pressure until t=0, lower pressure afterwards

The switching pressure condition

- coincides with experimental description
- high saturation near upper boundary after short time

A free boundary problem: $\boldsymbol{X}(t)$ and $\boldsymbol{q}(t)$ free parameters

Right domain: hysteresis blocks evolution

$$\begin{split} k(s_1)[\partial_x p + 1] &= q & \text{on } \{(x,t): X(t) < x < L_+\} \\ p(X(t) + 0, t) &= p_c(s_1(X(t))) + \gamma \\ p(L_+, t) &= p_+ \end{split}$$

Left domain: standard Richards evolution

$$\begin{split} \partial_t s &= \partial_x \left(k(s) [\partial_x p_c(s) + 1] \right) &\quad \text{on } \{(x,t): x < X(t)\} \\ p(X(t) - 0, t) &= p_c(s_1(X(t))) + \gamma, \qquad p(L_-, t) = p_- \\ \left(k(s) [\partial_x p + 1] \right) (X(t) - 0, t) &= q \end{split}$$

Proof of the instability theorem

- small perturbation of the initial values remains present for all times
- below high saturation, the front travels faster for all times

Conclusion: Richards equation with hysteresis and gravity is unstable

- * Rigorous proof, based on a free boundary problem
- * No heterogeneity of the medium assumed
- * Instability for hysteresis and non-monotone boundary data

Onset of fingering

Two-dimensional numerical results for Richards equation: static hysteresis, $\tau=0$.

discrete saturations at $t=t_0=-2$, $t\approx 509$, $t\approx 2508$, $t\approx 8487$.

Result

static hysteresis alone can create an instability

All numerical results by A. Rätz, TU Dortmund

Profiles in one space dimension, no dynamic factor

Pressure and saturation profiles without dynamic term, $\tau=10^{-3}$ Time instances: $t=0,\,t=2\cdot 10^{-6},\,t=170$

no static hysteresis $\gamma = 0$, $p_c(s) = s + 1$

with static hysteresis $\gamma = 1$, $p_c(s) = s$

Profiles in one space dimension, $\tau > 0$

Pressure and saturation profiles with dynamic term, $\tau=5$ Time instances: $t=0,\,t=2\cdot 10^{-6},\,t=170$

no static hysteresis $\gamma = 0$, $p_c(s) = s + 1$

with static hysteresis $\gamma = 1$, $p_c(s) = s$

Numerical results without static hysteresis

Evolution of saturation values for $\tau=0.5$, no static hysteresis.

Richards equation, time instances $t\approx 56$, $t\approx 114$, $t\approx 201$, $t\approx 406$ deterministic perturbation of the initial values

Numerical results with static hysteresis

Evolution of saturation values for au=0.5 with static hysteresis

Richards equation, time instances $t\approx 56$, $t\approx 114$, $t\approx 201$, $t\approx 406$ deterministic perturbation of the initial values

Conclusions:

Fingering for Richards flow with hysteresis and dynamic effect

- ullet hysteresis models for au>0 are well-posed
- \bullet front solutions for hysteresis and $\tau=0$ are unstable
- ullet static hysteresis & au>0 produces fingering

Thank you!