Time harmonic Maxwell's equations in periodic waveguides

Waves conference 2024

Andreas Kirsch, Ben Schweizer

July 2024

Maxwell's equations in a wave-guide

Given: Frequency $\omega>0$, permeability $\mu=\mu(x)$, permittivity $\varepsilon=\varepsilon(x)$, a right hand side $\left(f_{h}, f_{e}\right)$
Goal: Solve Maxwell's equations

$$
\begin{align*}
\operatorname{curl} E & =i \omega \mu H+f_{h} \\
\operatorname{curl} H & =-i \omega \varepsilon E+f_{e} \tag{1}
\end{align*}
$$

in a waveguide geometry: $\Omega=\mathbb{R} \times S \subset \mathbb{R}^{3}$ with $S \subset \mathbb{R}^{2}$ a bounded Lipschitz domain

The simplest related equation

An ordinary differential equation on \mathbb{R}

Given $f: \mathbb{R} \rightarrow \mathbb{C}$ with support in $[-R, R]$ and $\omega>0$, find $u: \mathbb{R} \rightarrow \mathbb{C}$ solving

$$
\partial_{x}^{2} u+\omega^{2} u=f
$$

Solution: For some $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{C}$:
For $x>R$, the solution is $u(x)=a_{1} e^{i \omega x}+a_{2} e^{-i \omega x}$
For $x<-R$, the solution is $u(x)=b_{1} e^{i \omega x}+b_{2} e^{-i \omega x}$
Radiation condition: One might want, e.g., $a_{2}=b_{1}=0$
Robin conditions in $x=R$ and $x=-R$ provide the solution u
Note: In general, $u \notin H^{1}(\mathbb{R}, \mathbb{C})$

Reformulation of Maxwell's equations

Goal: For $\omega>0, \mu=\mu(x), \varepsilon=\varepsilon(x),\left(f_{h}, f_{e}\right)=\left(f_{h}, f_{e}\right)(x)$, solve

$$
\begin{aligned}
\operatorname{curl} E & =i \omega \mu H+f_{h} \\
\operatorname{curl} H & =-i \omega \varepsilon E+f_{e}
\end{aligned}
$$

with the boundary conditions for perfect conductors: $E \times \nu=0$ on $\partial \Omega$
Periodicity, positivity: $\varepsilon, \mu \in L^{\infty}(\Omega)$ strictly positive, 2π-periodic in x_{1}
Decay property of the right hand side: $\int_{\Omega}\left(1+x_{1}^{2}\right)^{2}|f(x)|^{2} d x<\infty$

Weak formulation with $u:=H$ as the only unknown

$$
\begin{equation*}
\int_{\Omega}\left\{\frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \bar{\phi}-\omega^{2} \mu u \bar{\phi}\right\}=\int_{\Omega}\left\{\frac{1}{\varepsilon} f_{e} \operatorname{curl} \bar{\phi}-i \omega f_{h} \bar{\phi}\right\} \tag{2}
\end{equation*}
$$

for every $\phi \in H^{1}\left(\Omega, \mathbb{C}^{3}\right)$ with bounded support
This already encodes the boundary conditions

Useful function space:

$$
u \in H(\operatorname{curl}, \Omega):=\left\{u \in L^{2}\left(\Omega, \mathbb{C}^{3}\right) \mid \operatorname{curl} u \in L^{2}\left(\Omega, \mathbb{C}^{3}\right)\right\}
$$

Floquet-Bloch transformation

Periodicity cell: $W:=(0,2 \pi) \times S \quad$ for $\Omega=\mathbb{R} \times S$
Quasimoments: $\alpha \in I:=[-1 / 2,1 / 2]$

Floquet-Bloch transform

$$
\mathcal{F}_{\mathrm{FB}}: L^{2}(\Omega) \rightarrow L^{2}(W \times I), \quad u=u(x) \mapsto \hat{u}=\hat{u}(x, \alpha)
$$

For smooth functions u with compact support, $x=\left(x_{1}, \tilde{x}\right)$:

$$
\hat{u}\left(\left(x_{1}, \tilde{x}\right), \alpha\right):=\sum_{\ell \in \mathbb{Z}} u\left(x_{1}+2 \pi \ell, \tilde{x}\right) e^{-i \ell 2 \pi \alpha}
$$

Inverse: For arbitrary $y \in \Omega$, reconstruct with

$$
u(y)=\int_{I} \hat{u}(y, \alpha) d \alpha
$$

With these formulas also: $\mathcal{F}_{\mathrm{FB}}$ is an isomorphism with bounded inverse

$$
\mathcal{F}_{\mathrm{FB}}^{-1}: L^{2}\left(I, H_{\alpha}^{1}(W)\right) \rightarrow H^{1}(\Omega)
$$

Floquet-Bloch transformed equation

$$
W:=(0,2 \pi) \times S, \quad \alpha \in I:=[-1 / 2,1 / 2]
$$

Function space: $\quad X:=H_{\text {per }}($ curl,$W)$ with scalar product

$$
\langle u, \phi\rangle_{X}:=\left\langle\frac{1}{\varepsilon} \operatorname{curl} u, \operatorname{curl} \phi\right\rangle_{L^{2}(W)}+\langle\mu u, \phi\rangle_{L^{2}(W)}
$$

The Maxwell operator

For every $\alpha \in I$, a linear operator $L_{\alpha}: X \rightarrow X$ is defined by

$$
\left\langle L_{\alpha} v, \varphi\right\rangle_{X}:=\int_{W} \frac{1}{\varepsilon} \operatorname{curl}\left(v e^{i \alpha x_{1}}\right) \cdot \operatorname{curl} \overline{\left(\varphi e^{i \alpha x_{1}}\right)}-\omega^{2} \mu v \cdot \bar{\varphi}
$$

The right hand side $\left(f_{h}, f_{e}\right)$ is represented with a family $y_{\alpha} \in X$

Equivalent formulation

Maxwell is solved with $u \in H^{1}(\Omega)$ when we show: For almost every $\alpha \in I$, there is $v(\cdot, \alpha) \in X$ solving

$$
\begin{equation*}
L_{\alpha} v(\cdot, \alpha)=y_{\alpha} \tag{3}
\end{equation*}
$$

and there holds $v \in L^{2}(I, X)$

Critical α-values

Trivial case: When L_{α}^{-1} exists for all α, then $v(\cdot, \alpha)=L_{\alpha}^{-1}\left(y_{\alpha}\right)$

Critical α-values

For $\alpha \in I$ let Y^{α} be the space of α-quasiperiodic solutions to the homogeneous problem. Critical values:

$$
\mathcal{A}:=\left\{\alpha \in[-1 / 2,1 / 2] \mid Y^{\alpha} \neq\{0\}\right\}
$$

$\longrightarrow Y^{\alpha}$ consists of propagating modes
Energy transport is encoded with an hermitean form:

$$
Q(u, \phi):=i \int_{W} \frac{1}{\varepsilon}[(\operatorname{curl} u \times \bar{\phi})-(\operatorname{curl} \bar{\phi} \times u)] \cdot e_{1}
$$

u a propagating mode

u transports energy to the right $\Longleftrightarrow Q(u, u)>0$
u transports energy to the left $\Longleftrightarrow Q(u, u)<0$

Assumption

For every $0 \neq \phi \in Y^{\alpha}$, the map $Q(\cdot, \phi): Y^{\alpha} \rightarrow \mathbb{C}$ is non-trivial

Functional analysis

Definition (Regular C^{1}-family)

$\left(L_{\alpha}\right)_{\alpha}$ is a regular C^{1}-family when:

1. L_{α} is a self-adjoint Fredholm operator with index 0 (for every α)
2. The operators depend differentiable on α
3. The derivatives $\partial_{\alpha} L_{\alpha}$ are invertible on the kernel for every α

Theorem (Functional analysis, Kirsch et al.)

Let $\left(L_{\alpha}\right)_{\alpha}$ be a regular C^{1}-family of operators
Let $\alpha \mapsto y_{\alpha} \in L_{\alpha}(X)$ map into the image and be Lipschitz
Then $v(\cdot, \alpha)=L_{\alpha}^{-1}\left(y_{\alpha}\right)$ is uniformly bounded
Proof with implicit function theorem
Information regarding Maxwell: $\left(L_{\alpha}\right)_{\alpha}$ is a regular C^{1}-family Relevant step: Fredholm property of L_{α} Invertibility of $\partial_{\alpha} L_{\alpha}$ on the kernel follows from Q-assumption (Loosely speaking: Q is the derivative $\partial_{\alpha} L_{\alpha}$)

Problem: In general, $y_{\alpha} \notin L_{\alpha}(X)$

Indeed: When $y_{\alpha} \in L_{\alpha}(X)$ for all α, we find $u \in L^{2}(\Omega)$!
Cut-off functions: ρ_{+}with limits 1 and 0 and $\rho_{-}:=1-\rho_{+}$

Let $\left(\phi_{\ell}\right)_{\ell}$ be the quasiperiodic homogeneous solutions For every ℓ, let ρ_{ℓ} be one of the two cut-off functions

Definition (Propagating part and radiation condition)

(i) Propagating part. For complex coefficients $\left(a_{\ell}\right)_{1 \leq \ell \leq L}$,

$$
u^{\mathrm{prop}}:=\sum_{\ell=1} a_{\ell} \rho_{\ell} \phi_{\ell}
$$

is the propagating wave function corresponding to $a \in \mathbb{C}^{L}$
(ii) Radiation condition. A solution $u \in H_{\mathrm{loc}}(\operatorname{curl}, \Omega)$ of (2) satisfies the radiation condition, when there exists $a \in \mathbb{C}^{L}$ such that

$$
u^{\mathrm{rad}}:=u-u^{\mathrm{prop}} \in H(\operatorname{curl}, \Omega)
$$

Existence result

Theorem (Existence and uniqueness of solutions to the radiation problem)

Let $S, \omega, \varepsilon, \mu, f_{e}$ and f_{h} be given, let the Q-assumption be satisfied.
Then (2) has a unique solution $u \in H_{\text {loc }}(\operatorname{curl}, \Omega)$ satisfying the radiation condition. With $C=C\left(S, \varepsilon, \mu, \omega, \rho_{ \pm}\right)$holds

$$
\left\|u^{\mathrm{rad}}\right\|_{H(\operatorname{curl}, \Omega)}+\left\|\left.u^{\mathrm{prop}}\right|_{W}\right\|_{H(\operatorname{curl}, W)} \leq C\left(\left\|f_{e}\right\|_{L_{*}^{2}(\Omega)}+\left\|f_{h}\right\|_{L_{*}^{2}(\Omega)}\right)
$$

The coefficients $\left(a_{\ell}\right)_{\ell}$ are given by

$$
a_{\ell}=\frac{2 \pi i}{\left|Q\left(\phi_{\ell}, \phi_{\ell}\right)\right|}\left(\left\langle\varepsilon^{-1} f_{e}, \operatorname{curl} \phi_{\ell}\right\rangle_{L^{2}(\Omega)}-\left\langle i \omega f_{h}, \phi_{\ell}\right\rangle_{L^{2}(\Omega)}\right)
$$

Sketch of proof

Step 1: Under some orthogonality condition holds $y_{\alpha} \in L_{\alpha}(X)$ for all α Functional analysis theorem yields the solution in $u \in H^{1}(\Omega)$
Step 2: General case. Pre-factors $\left(a_{\ell}\right)_{\ell} \in \mathbb{C}^{L}$ yield $u^{\text {prop }}$
$u-u^{\text {prop }}$ satisfies a different problem. Show that $a_{\ell} \in \mathbb{C}$ can be chosen such that the problem for $u-u^{\text {prop }}$ satisfies the orthogonality condition.

Fredholm property

Here: $\alpha \in I$ is fixed, any dependence on α is suppressed $W=(0,2 \pi) \times S, \quad \varepsilon, \mu \in L^{\infty}(\Omega)$ real valued and positive
Function space: $H_{\alpha}(\operatorname{curl}, W)$ with scalar product

$$
\langle u, \varphi\rangle_{H(\operatorname{curl}, W)}:=\int_{W}\left\{\frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \bar{\varphi}+\mu u \cdot \bar{\varphi}\right\}
$$

Operator: $L: H_{\alpha}(\operatorname{curl}, W) \rightarrow H_{\alpha}(\operatorname{curl}, W)$ defined by

$$
\langle L u, \varphi\rangle_{H(\operatorname{curl}, W)}=\int_{W}\left\{\frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \bar{\varphi}-\omega^{2} \mu u \cdot \bar{\varphi}\right\}
$$

Helmholtz decomposition: $H_{\alpha}(\operatorname{curl}, W)=D \oplus G$:

$$
\begin{aligned}
D & :=\left\{u \in H_{\alpha}(\operatorname{curl}, W) \mid \int_{W} \mu u \cdot \nabla \psi=0 \text { for all } \psi \in H_{\alpha}^{1}(W)\right\} \\
G & :=\left\{v \in H_{\alpha}(\operatorname{curl}, W) \mid \exists \psi \in H_{\alpha}^{1}(W): v=\nabla \psi\right\}
\end{aligned}
$$

$\longrightarrow H($ curl,$W)$-orthogonal complements

Fredholm property

Lemma (Fredholm property)

The operator L is a self-adjoint Fredholm operator with index 0 .
Consider $v \in G$ and $L v \in X$ and $u \in D$:

$$
\langle L v, u\rangle_{H(\operatorname{curl}, W)}=-\omega^{2}\langle\mu v, u\rangle_{L^{2}(W)}=-\omega^{2}\langle v, \mu u\rangle_{L^{2}(W)}=0
$$

This provides $\left.L\right|_{G}: G \rightarrow G$. Similarly: $\left.L\right|_{D}: D \rightarrow D$.
Hence, on $H_{\alpha}(\operatorname{curl}, W)=D \oplus G$:

$$
L=\left(\begin{array}{cc}
\left.L\right|_{D} & 0 \\
0 & \left.L\right|_{G}
\end{array}\right)
$$

$\left.L\right|_{D}: D \rightarrow D$ is a Fredholm operator with index 0 : One shows that $K:=L-\mathrm{id}$ is a compact operator $D \rightarrow D$.
On G, the operator L is nothing but multiplication with $-\omega^{2}$, hence a Fredholm operator with index 0 .

$Y=B$

Two function spaces of modes

The span of quasiperiodic solutions

$$
Y:=\bigoplus_{j=1}^{J} Y_{j} \subset H(\operatorname{curl}, W), \quad \text { identified with } \quad Y \subset H_{\mathrm{loc}}(\operatorname{curl}, \Omega)
$$

The space of bounded solutions, $\|U\|_{s L}:=\sup _{r \in 2 \pi \mathbb{Z}}\left\|\left.U\right|_{W_{r}}\right\|_{L^{2}\left(W_{r}\right)}$:

$$
B:=\left\{U \in H_{\mathrm{loc}}(\operatorname{curl}, \Omega) \mid U \text { solves (2) for } f_{e}=f_{h}=0,\|U\|_{s L}<\infty\right\}
$$

Theorem (Characterization of bounded homogeneous solutions)

When the Q-assumption is satisfied, then

$$
Y=B
$$

Proof of $Y=B$.

We consider $U \in B$ and want to show $U \in Y$
Let $f=f_{h}$ with compact support be arbitrary
For f, let the Maxwell solution be $u=u^{\text {prop }}+u^{\mathrm{rad}}$ with $\left(a_{\ell}\right)_{1 \leq \ell \leq L}$
With cut-off function ϑ_{R}, use $U \vartheta_{R}$ as a test-function

$$
\int_{\Omega}\left\{\frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl}\left(\bar{U} \vartheta_{R}\right)-\omega^{2} \mu u \cdot \bar{U} \vartheta_{R}\right\}=-i \omega \int_{\Omega} f \cdot \bar{U}
$$

Evaluate the left hand side using that U is a homogeneous solution: With c_{ℓ} depending on U and ϕ_{ℓ}, but not on f, we find

$$
\sum_{\ell=1}^{L} c_{\ell} a_{\ell}=-i \omega\langle f, U\rangle_{L^{2}(\Omega)}
$$

We now recall: a_{ℓ} is a linear combination of $\left\langle f, \phi_{k}\right\rangle_{L^{2}(\Omega)}$.
Result, since f was arbitrary: U is a linear combination of the ϕ_{k}.

Locally perturbed media

Theorem (Fredholm alternative for perturbed media)

Let $\mu_{\mathrm{per}}, \varepsilon_{\mathrm{per}} \in L^{\infty}(\Omega)$ be periodic functions with positive lower bounds Let $\mu, \varepsilon \in L^{\infty}(\Omega)$ be given as compact perturbations of $\mu_{\mathrm{per}}, \varepsilon_{\mathrm{per}}$ We assume positive lower bounds also for μ, ε
Let the Q-assumption be satisfied for $\mu_{\mathrm{per}}, \varepsilon_{\mathrm{per}}$
Let $u=0$ be the only solution to the homogeneous perturbed system
Then there exists a unique radiating solution for every $\left(f_{e}, f_{h}\right)$
Hint on the proof: With operators $D: X \rightarrow Y$ and $\xi, Q: Y \rightarrow Y$

$$
D:=\left(\begin{array}{cc}
0 & \text { curl } \\
- \text { curl } & 0
\end{array}\right), \quad \xi:=\left(\begin{array}{cc}
\varepsilon_{\text {per }} & 0 \\
0 & \mu_{\text {per }}
\end{array}\right), \quad Q:=\left(\begin{array}{cc}
q_{\varepsilon} & 0 \\
0 & q_{\mu}
\end{array}\right)
$$

Maxwell's equations take the form

$$
(D+i \omega \xi) u=i \omega Q u+f
$$

Show Fredholm property for compactly supported q_{ε}, q_{μ}
\longrightarrow Helmholtz decompositions

Conclusions

The radiation problem for time harmonic Maxwell's equations in wave-guides can be solved

- Method: Functional analysis (implicit function theorem)
- Underlying operator is Fredholm (for fixed quasi-moment α)

Further results:

- Compactly perturbed media
- $Y=B$

Thank you!

Recent articles:

Kirsch A and Schweizer B (2024), "Time harmonic Maxwell's equations in periodic waveguides" (submitted)
Kirsch A and Schweizer B (2024), "Periodic wave-guides revisited: Radiation conditions, limiting absorption principles, and the space of boundes solutions", Mathematical Methods in the Applied Sciences

