Time harmonic Maxwell's equations in periodic waveguides

Waves conference 2024

Andreas Kirsch, Ben Schweizer

July 2024

Maxwell's equations in a wave-guide

Given: Frequency $\omega>0$, permeability $\mu=\mu(x)$, permittivity $\varepsilon=\varepsilon(x)$, a right hand side (f_h,f_e)

Goal: Solve Maxwell's equations

$$\operatorname{curl} E = i\omega \mu H + f_h$$

$$\operatorname{curl} H = -i\omega \varepsilon E + f_e$$
(1)

in a waveguide geometry: $\Omega=\mathbb{R}\times S\subset\mathbb{R}^3$ with $S\subset\mathbb{R}^2$ a bounded Lipschitz domain

The simplest related equation

An ordinary differential equation on $\ensuremath{\mathbb{R}}$

Given $f: \mathbb{R} \to \mathbb{C}$ with support in [-R, R] and $\omega > 0$,

find $u: \mathbb{R} \to \mathbb{C}$ solving

$$\partial_x^2 u + \omega^2 u = f$$

Solution: For some $a_1, a_2, b_1, b_2 \in \mathbb{C}$:

For x > R, the solution is $u(x) = a_1 e^{i\omega x} + a_2 e^{-i\omega x}$

For x < -R, the solution is $u(x) = b_1 e^{i\omega x} + b_2 e^{-i\omega x}$

Radiation condition: One might want, e.g., $a_2 = b_1 = 0$

Robin conditions in x=R and x=-R provide the solution u

Note: In general, $u \notin H^1(\mathbb{R}, \mathbb{C})$

Reformulation of Maxwell's equations

Goal: For
$$\omega>0$$
, $\mu=\mu(x)$, $\varepsilon=\varepsilon(x)$, $(f_h,f_e)=(f_h,f_e)(x)$, solve
$$\operatorname{curl} E=i\omega\mu\,H+f_h$$

$$\operatorname{curl} H=-i\omega\varepsilon\,E+f_e$$

with the boundary conditions for perfect conductors: $E \times \nu = 0$ on $\partial\Omega$ Periodicity, positivity: $\varepsilon, \mu \in L^\infty(\Omega)$ strictly positive, 2π -periodic in x_1 Decay property of the right hand side: $\int_\Omega (1+x_1^2)^2 |f(x)|^2 dx < \infty$

Weak formulation with u := H as the only unknown

$$\int_{\Omega} \left\{ \frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \bar{\phi} - \omega^{2} \mu u \bar{\phi} \right\} = \int_{\Omega} \left\{ \frac{1}{\varepsilon} f_{e} \operatorname{curl} \bar{\phi} - i \omega f_{h} \bar{\phi} \right\}$$
 (2)

for every $\phi \in H^1(\Omega, \mathbb{C}^3)$ with bounded support This already encodes the boundary conditions

Useful function space:

$$u \in H(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega, \mathbb{C}^3) \middle| \operatorname{curl} u \in L^2(\Omega, \mathbb{C}^3) \right\}$$

Floquet-Bloch transformation

Periodicity cell: $W:=(0,2\pi)\times S$ for $\Omega=\mathbb{R}\times S$

Quasimoments: $\alpha \in I := [-1/2, 1/2]$

Floquet-Bloch transform

$$\mathcal{F}_{\mathrm{FB}}: L^2(\Omega) \to L^2(W \times I), \qquad u = u(x) \mapsto \hat{u} = \hat{u}(x, \alpha)$$

For smooth functions u with compact support, $x = (x_1, \tilde{x})$:

$$\hat{u}((x_1, \tilde{x}), \alpha) := \sum_{\ell \in \mathbb{Z}} u(x_1 + 2\pi\ell, \tilde{x}) e^{-i\ell 2\pi\alpha}$$

Inverse: For arbitrary $y \in \Omega$, reconstruct with

$$u(y) = \int_{I} \hat{u}(y, \alpha) \, d\alpha$$

With these formulas also: $\mathcal{F}_{\mathrm{FB}}$ is an isomorphism with bounded inverse

$$\mathcal{F}_{\operatorname{FB}}^{-1}:L^2\big(I,H^1_\alpha(W)\big)\to H^1(\Omega)$$

Floquet-Bloch transformed equation

$$W := (0, 2\pi) \times S$$
, $\alpha \in I := [-1/2, 1/2]$

Function space: $X := H_{per}(\text{curl}, W)$ with scalar product

$$\langle u, \phi \rangle_X := \left\langle \frac{1}{\varepsilon} \operatorname{curl} u, \operatorname{curl} \phi \right\rangle_{L^2(W)} + \langle \mu u, \phi \rangle_{L^2(W)}$$

The Maxwell operator

For every $\alpha \in I$, a linear operator $L_{\alpha}: X \to X$ is defined by

$$\langle L_{\alpha} v, \varphi \rangle_{X} := \int_{W} \frac{1}{\varepsilon} \operatorname{curl} \left(v e^{i\alpha x_{1}} \right) \cdot \operatorname{curl} \left(\overline{\varphi e^{i\alpha x_{1}}} \right) - \omega^{2} \mu \, v \cdot \overline{\varphi}$$

The right hand side (f_h, f_e) is represented with a family $y_\alpha \in X$

Equivalent formulation

Maxwell is solved with $u \in H^1(\Omega)$ when we show: For almost every $\alpha \in I$, there is $v(\cdot, \alpha) \in X$ solving

$$L_{\alpha}v(\cdot,\alpha) = y_{\alpha} \tag{3}$$

and there holds $v \in L^2(I,X)$

Critical α -values

Trivial case: When L_{α}^{-1} exists for all α , then $v(\cdot, \alpha) = L_{\alpha}^{-1}(y_{\alpha})$

Critical α -values

For $\alpha \in I$ let Y^{α} be the space of α -quasiperiodic solutions to the homogeneous problem. Critical values:

$$\mathcal{A} := \{ \alpha \in [-1/2, 1/2] \, | \, Y^{\alpha} \neq \{0\} \}$$

 $\longrightarrow Y^\alpha$ consists of propagating modes

Energy transport is encoded with an hermitean form:

$$Q(u,\phi) := i \int_{W} \frac{1}{\varepsilon} \left[(\operatorname{curl} u \times \bar{\phi}) - (\operatorname{curl} \bar{\phi} \times u) \right] \cdot e_1$$

u a propagating mode

$$u$$
 transports energy to the right $\iff Q(u, u) > 0$
 u transports energy to the left $\iff Q(u, u) < 0$

Assumption

For every $0 \neq \phi \in Y^{\alpha}$, the map $Q(\cdot, \phi): Y^{\alpha} \to \mathbb{C}$ is non-trivial

Functional analysis

Definition (Regular C^1 -family)

 $(L_{\alpha})_{\alpha}$ is a regular C^1 -family when:

- 1. L_{α} is a self-adjoint Fredholm operator with index 0 (for every α)
- 2. The operators depend differentiable on α
- 3. The derivatives $\partial_{\alpha}L_{\alpha}$ are invertible on the kernel for every α

Theorem (Functional analysis, Kirsch et al.)

Let $(L_{\alpha})_{\alpha}$ be a regular C^1 -family of operators Let $\alpha \mapsto y_{\alpha} \in L_{\alpha}(X)$ map into the image and be Lipschitz Then $v(\cdot,\alpha) = L_{\alpha}^{-1}(y_{\alpha})$ is uniformly bounded

Proof with implicit function theorem

Information regarding Maxwell: $(L_{\alpha})_{\alpha}$ is a regular C^1 -family Relevant step: Fredholm property of L_{α} Invertibility of $\partial_{\alpha}L_{\alpha}$ on the kernel follows from Q-assumption (Loosely speaking: Q is the derivative $\partial_{\alpha}L_{\alpha}$)

Problem: In general, $y_{\alpha} \notin L_{\alpha}(X)$

Indeed: When $y_{\alpha} \in L_{\alpha}(X)$ for all α , we find $u \in L^{2}(\Omega)!$

Cut-off functions: ρ_+ with limits 1 and 0 and $\rho_-:=1-\rho_+$

Let $(\phi_\ell)_\ell$ be the quasiperiodic homogeneous solutions For every ℓ , let ρ_ℓ be one of the two cut-off functions

Definition (Propagating part and radiation condition)

(i) Propagating part. For complex coefficients $(a_{\ell})_{1 \leq \ell \leq L}$,

$$u^{\text{prop}} := \sum_{\ell=1} a_{\ell} \, \rho_{\ell} \, \phi_{\ell}$$

is the propagating wave function corresponding to $a\in\mathbb{C}^L$

(ii) Radiation condition. A solution $u \in H_{loc}(\operatorname{curl},\Omega)$ of (2) satisfies the radiation condition, when there exists $a \in \mathbb{C}^L$ such that

$$u^{\mathrm{rad}} := u - u^{\mathrm{prop}} \in H(\mathrm{curl}\,,\Omega)$$

Existence result

Theorem (Existence and uniqueness of solutions to the radiation problem)

Let S, ω , ε , μ , f_e and f_h be given, let the Q-assumption be satisfied. Then (2) has a unique solution $u \in H_{\mathrm{loc}}(\mathrm{curl}\,,\Omega)$ satisfying the radiation condition. With $C = C(S,\varepsilon,\mu,\omega,\rho_\pm)$ holds

$$||u^{\text{rad}}||_{H(\text{curl},\Omega)} + ||u^{\text{prop}}||_{W}||_{H(\text{curl},W)} \le C \left(||f_e||_{L_*^2(\Omega)} + ||f_h||_{L_*^2(\Omega)}\right)$$

The coefficients $(a_\ell)_\ell$ are given by

$$a_{\ell} = \frac{2\pi i}{|Q(\phi_{\ell}, \phi_{\ell})|} \left(\langle \varepsilon^{-1} f_{e}, \operatorname{curl} \phi_{\ell} \rangle_{L^{2}(\Omega)} - \langle i\omega f_{h}, \phi_{\ell} \rangle_{L^{2}(\Omega)} \right)$$

Sketch of proof

Step 1: Under some orthogonality condition holds $y_{\alpha} \in L_{\alpha}(X)$ for all α Functional analysis theorem yields the solution in $u \in H^1(\Omega)$

Step 2: General case. Pre-factors $(a_\ell)_\ell\in\mathbb{C}^L$ yield u^{prop} $u-u^{\mathrm{prop}}$ satisfies a different problem. Show that $a_\ell\in\mathbb{C}$ can be chosen such that the problem for $u-u^{\mathrm{prop}}$ satisfies the orthogonality condition.

Fredholm property

Here: $\alpha \in I$ is fixed, any dependence on α is suppressed

$$W=(0,2\pi)\times S$$
, $\varepsilon,\mu\in L^\infty(\Omega)$ real valued and positive

Function space: $H_{\alpha}(\operatorname{curl}, W)$ with scalar product

$$\langle u, \varphi \rangle_{H(\operatorname{curl}, W)} := \int_{W} \left\{ \frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \bar{\varphi} + \mu \, u \cdot \bar{\varphi} \right\}$$

Operator: $L: H_{\alpha}(\operatorname{curl}, W) \to H_{\alpha}(\operatorname{curl}, W)$ defined by

$$\langle Lu, \varphi \rangle_{H(\operatorname{curl}, W)} = \int_W \left\{ \frac{1}{\varepsilon} \operatorname{curl} u \cdot \operatorname{curl} \bar{\varphi} - \omega^2 \mu \, u \cdot \bar{\varphi} \right\}$$

Helmholtz decomposition: $H_{\alpha}(\operatorname{curl}, W) = D \oplus G$:

$$\begin{split} D &:= \left. \left\{ u \in H_{\alpha}(\operatorname{curl}, W) \, \middle| \, \int_{W} \mu \, u \cdot \nabla \psi = 0 \text{ for all } \psi \in H^{1}_{\alpha}(W) \right\} \\ G &:= \left. \left\{ v \in H_{\alpha}(\operatorname{curl}, W) \, \middle| \, \exists \psi \in H^{1}_{\alpha}(W) : \, v = \nabla \psi \right\} \end{split}$$

 $\longrightarrow H(\operatorname{curl}, W)$ -orthogonal complements

Fredholm property

Lemma (Fredholm property)

The operator L is a self-adjoint Fredholm operator with index 0.

Consider $v \in G$ and $Lv \in X$ and $u \in D$:

$$\langle Lv, u \rangle_{H(\operatorname{curl}, W)} = -\omega^2 \langle \mu v, u \rangle_{L^2(W)} = -\omega^2 \langle v, \mu u \rangle_{L^2(W)} = 0$$

This provides $L|_G: G \to G$. Similarly: $L|_D: D \to D$. Hence, on $H_{\alpha}(\operatorname{curl}, W) = D \oplus G$:

$$L = \begin{pmatrix} L|_D & 0\\ 0 & L|_G \end{pmatrix}$$

 $L|_D:D\to D$ is a Fredholm operator with index 0: One shows that $K:=L-\mathrm{id}$ is a compact operator $D\to D$.

On G, the operator L is nothing but multiplication with $-\omega^2$, hence a Fredholm operator with index 0.

Y = B

Two function spaces of modes

The span of quasiperiodic solutions

$$Y \;:=\; \bigoplus_{j=1}^J Y_j \subset H(\operatorname{curl}\,,W)\,, \quad \text{identified with} \quad Y \;\subset\; H_{\operatorname{loc}}(\operatorname{curl}\,,\Omega)$$

The space of bounded solutions, $\|U\|_{sL}:=\sup_{r\in 2\pi\mathbb{Z}}\|U|_{W_r}\|_{L^2(W_r)}$:

$$B:=\{U\in H_{\mathrm{loc}}(\mathrm{curl}\,,\Omega)\,|\,U \text{ solves (2) for } f_e=f_h=0\,,\,\,\|U\|_{sL}<\infty\}$$

Theorem (Characterization of bounded homogeneous solutions)

When the Q-assumption is satisfied, then

$$Y = B$$

Proof of Y = B.

We consider $U \in B$ and want to show $U \in Y$

Let $f = f_h$ with compact support be arbitrary

For f, let the Maxwell solution be $u=u^{\mathrm{prop}}+u^{\mathrm{rad}}$ with $(a_{\ell})_{1\leq \ell\leq L}$

With cut-off function ϑ_R , use $U\vartheta_R$ as a test-function

$$\int_{\Omega} \left\{ \frac{1}{\varepsilon} \mathrm{curl} \, u \cdot \mathrm{curl} \, (\bar{U} \vartheta_R) - \omega^2 \mu \, u \cdot \bar{U} \vartheta_R \right\} = -i \omega \int_{\Omega} f \cdot \bar{U}$$

Evaluate the left hand side using that U is a homogeneous solution: With c_ℓ depending on U and ϕ_ℓ , but not on f, we find

$$\sum_{\ell=1}^{L} c_{\ell} a_{\ell} = -i\omega \langle f, U \rangle_{L^{2}(\Omega)}$$

We now recall: a_{ℓ} is a linear combination of $\langle f, \phi_k \rangle_{L^2(\Omega)}$.

Result, since f was arbitrary: U is a linear combination of the ϕ_k .

Locally perturbed media

Theorem (Fredholm alternative for perturbed media)

Let $\mu_{\mathrm{per}}, \varepsilon_{\mathrm{per}} \in L^{\infty}(\Omega)$ be periodic functions with positive lower bounds

Let $\mu, \varepsilon \in L^{\infty}(\Omega)$ be given as compact perturbations of $\mu_{\mathrm{per}}, \varepsilon_{\mathrm{per}}$

We assume positive lower bounds also for μ, ε

Let the Q-assumption be satisfied for $\mu_{\mathrm{per}}, \varepsilon_{\mathrm{per}}$

Let u=0 be the only solution to the homogeneous perturbed system

Then there exists a unique radiating solution for every (f_e,f_h)

Hint on the proof: With operators $D: X \to Y$ and $\xi, Q: Y \to Y$

$$D := \begin{pmatrix} 0 & \operatorname{curl} \\ -\operatorname{curl} & 0 \end{pmatrix}, \quad \xi := \begin{pmatrix} \varepsilon_{\operatorname{per}} & 0 \\ 0 & \mu_{\operatorname{per}} \end{pmatrix}, \quad Q := \begin{pmatrix} q_{\varepsilon} & 0 \\ 0 & q_{\mu} \end{pmatrix}$$

Maxwell's equations take the form

$$(D + i\omega \,\xi)u = i\omega \,Qu + f$$

Show Fredholm property for compactly supported q_{ε}, q_{μ}

→ Helmholtz decompositions

Conclusions

The radiation problem for time harmonic Maxwell's equations in wave-guides can be solved

- Method: Functional analysis (implicit function theorem)
- Underlying operator is Fredholm (for fixed quasi-moment α)

Further results:

- Compactly perturbed media
- ightharpoonup Y = B

Thank you!

Recent articles:

Kirsch A and Schweizer B (2024), "Time harmonic Maxwell's equations in periodic waveguides" (submitted)

Kirsch A and Schweizer B (2024), "Periodic wave-guides revisited: Radiation conditions, limiting absorption principles, and the space of boundes solutions", Mathematical Methods in the Applied Sciences