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Mathematical analysis of plasticity

What can be done mathematically in “plasticity”?
(a personal selection)

1 Analysis of crystal plasticity, derivation of macro-equations

2 Nonlinear theories

3 Homogenization (starting from a continuum model)
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What is homogenization?

A heterogeneous material occupies a set Ω ⊂ R3. How does it deform
under applied forces?

Aim of homogenization

In good approximation:
the heterogeneous material (left)
behaves like the homogeneous effective material (right).
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What can we measure?

We can make experiments with a heterogeneous test-volume. We deform
the specimen (shear and compression) and measure the response

F

F

Measurements yield:

the averaged deformation
ē ∈ Rn×n leads to

the averaged force σ̄ ∈ Rn×n

Result
We determined the tensor A in the law

σ̄ = A · ē
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Effective tensor from deformation experiment

How can we understand the effect of coefficients aε?

T

1 Consider a simplex T ⊂ Rn and a
deformation tensor ξ ∈ Rn×n

2 Impose affine boundary data
Uξ : Rn → Rn, Uξ(x) := ξ · x

3 Solve the problem −∇ · (aε∇uε) = 0
on T with uε = Uξ on ∂T

Assumption: The averaged stress is

lim
ε→0

1

|T |

∫
T
aε∇uε = A · ξ

Under strain ξ, the average stress in the test-volume is A · ξ
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Homogenization in more mathematical terms

Heterogeneous material in
Ω ⊂ R3. The deformation is

uε : Ω→ R3

σε = aε∇uε

−∇ · σε = f

Effective material description:

uε ≈ u

deformation u : Ω→ R3 with

stress tensor σ : Ω→ R3×3

The aim of homogenization

The effective law in Ω is

−∇ · σ = f with σ = A · ∇u
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Coefficients that allow averaging

In this spirit, non-periodic problems: Needle problem approach!

Assumption: The single
triangle reacts on an affine
deformation Uξ (with ∇Uξ ≡ ξ)
with the force A · ξ

Definition
The coefficients aε allow averaging of the
constitutive relation with A ∈ Rn×n if, for
simplices T , solutions of

−∇ · (aε∇uε) = 0 in T
uε = Uξ on ∂T ,

with affine boundary data Uξ satisfy

lim
ε→0

1

|T |

∫
T
aε∇uε = A · ξ
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The needle-problem homogenization method

Theorem (B.S. and M. Veneroni, 2011)

Assume that the coefficients aε allow averaging of the constitutive
relation with A ∈ Rn×n.

Then: Solutions uε of −∇ · (aε∇uε) = f on domains Ω converge to
solutions u∗ of −∇ · (A · ∇u∗) = f .

The proof uses:

triangulations

approximate solutions

adapted grids and a new
div-curl Lemma

uε
ε, h → 0←→ uεh

� ε → 0

u∗
h → 0←− uh
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Definition of the needle problem

Approximate solutions: defined as the solutions uεh of the

Definition (Needle problem)

Given a Lipschitz domain Ω ⊂ Rn, a triangulation Th of Ωh ⊂ Ω, and
piecewise affine boundary data ψ. Function space:

Nh :=
{
φ ∈ H1

0 (Ω) : φ|∂Tk
is affine for all Tk ∈ Th, φ ≡ 0 on Ω \ Ωh

}
Given gh, the needle problem is to find uεh ∈ ψ +Nh such that∫

Ω

aε∇uεh · ∇φ =

∫
Γh

ghφ ∀φ ∈ Nh

Here: f is replaced by gh such that∫
⋃
∂Tk

gh · ϕ =

∫
Ω

f · ϕ for piecewise affine test functions ϕ
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Proof (homogenization of the elastic problem)

Main part of the homogenization proof:

Lemma (Comparison of uε
h and uε)

aε ∈ L∞(Ω;Rn×n) elliptic, ψ boundary values, uε ∈ H1(Ω) solutions of
original problem, uεh ∈ ψ +Nh solutions to needle problem. If Th are
adapted grids for (uε)ε, then

lim
h→0

lim
ε→0
‖uεh − uε‖H1(Ω) = 0.

Idea of proof:

1 use (uε − uεh) as a test-function in the original problem

2 use (uε − uεh) as a test-function in the needle problem

3 difference yields estimate for ‖uε − uεh‖2H1(T )

4 show smallness of error terms for ε→ 0 and then h→ 0

the last step uses a div-curl lemma on each triangle
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Adapted grids

Theorem (Adapted grids and div-curl lemma)

Let Ω ⊂ Rn, n = 2 or n = 3 be a bounded Lipschitz domain, (uε)ε a
bounded sequence in H1(Ω).

1 To arbitrary h > 0 there exists Ωh ⊂ Ω and an adapted
triangulation Th of Ωh for (uε)ε.

2 Let (uε)ε be a sequence with uε ⇀ u weakly in H1(Ω) and let Th

be an adapted grid for (uε)ε. Let (qε)ε be a sequence in L2(Ω,Rn)
satisfying

qε ⇀ q weak in L2(Ω),

fε := ∇ · qε → f strong in H−1(T ), for all T ∈ Th.

Then
lim
ε→0

∫
Ωh

qε · ∇uε dx =

∫
Ωh

q · ∇u dx.

Idea: boundary values of uε are bounded in H1, hence compact in H1/2
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Plasticity as a system with hysteresis

Important in plasticity: Hysteresis!

w

u

The stress σ(x, t) depends not only on the current deformation tensor
∇u(x, t), but also on its history:

σ(x, t) = F ({∇u(x, s)|s ∈ [0, t]})
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Plasticity (Prandtl-Reuss model)

Reference domain of material: Ω, time interval: (0, T )

Variables

displacement u : Ω× (0, T )→ Rn
strain ∇su : Ω× (0, T )→ Rn×n
stress σ : Ω× (0, T )→ Rn×n

with ∇su = 1
2 (∇u+ (∇u)T )

Equations

Conservation of momentum: −∇ · σ = f
Additive strain decomposition: ∇su = e︸︷︷︸

elastic strain

+ p︸︷︷︸
plastic strain

Hooke’s law: Cσ = e
Flow rule with kinematic hardening: ∂tp ∈ ∂Ψ(σ −Bp )

Given: force f , elasticity tensor C, hardening tensor B, potential Ψ
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What can we expect from homogenization?

The periodicity cell remembers its deformation history

J. Appl. Mech 81(10), 101005 (Aug 13, 2014)

We cannot expect to find a map

Rn×n 3 ē 7→ σ̄ ∈ Rn×n

(current local strain)
7→ (current local stress)

Definition (Averaging property in a system with hysteresis)

The ε-system allows averaging if there exists an operator

Σ : H1(0, T ;Rn×ns )→ H1(0, T ;Rn×ns )

such that: For a simplex T ⊂ Rn, ξ ∈ H1(0, T ;Rn×ns ) and solutions uε,
eε, pε, σε to the ε-problem on T with f = 0 and uε(t)|∂T = ξ(t) · x
holds:

−
∫
T
σε(t)→ Σ(ξ)(t)
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An averaging property

e

e(t)

s

s=t

(t)

Σ

σ

An evolution of strain is mapped to a stress

Theorem (Abstract homogenization, M. Heida and B.S.)

Given Ω and f , let the coefficients allow averaging with a lower
semi-continuous stress operator Σ. Then the effective problem

−∇ · Σ(∇su) = f in Ω× (0, T )

has a solution u. As ε→ 0, there holds uε ⇀ u in H1(0, T ;H1(Ω)).

Σ(∇su)(x, t) = Σ(∇su(x, .))(t)
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Needle problem for plasticity

Discretization of Ωh ⊂ Ω with grid Th = {Tk}k∈Λh

Nh :=
{
φ ∈ H1

0 (Ω) : φ|∂Tk is affine ∀ k ∈ Λh, φ ≡ 0 on Ω \ Ωh
}

As before: f replaced by gh such that∫
⋃
∂Tk

gh · ϕ =

∫
Ω

f · ϕ for piecewise affine ϕ

Definition (Needle problem in plasticity)

Find uεh ∈ H1(0, T ;Nh), eεh, p
ε
h, σ

ε
h ∈ H1(0, T ;L2(Ωh;Rn×ns )):∫ T

0

∫
Ωh

σεh : ∇ϕ =

∫ T

0

∫
⋃
∂Tk

gh · ϕ ∀ϕ ∈ L2(0, T ;Nh) ,

and almost everywhere in Ωh holds

∇suεh = eεh + pεh , Cεσ
ε
h = eεh , ∂tp

ε
h ∈ ∂Ψε (σεh −Bεpεh)
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Homogenization proof

uεh = solution of the auxiliary problem, “needle problem”

1 lim
h→0

lim
ε→0
‖uεh − uε‖L∞(0,T ;H1(Ω)) → 0

I Testing with ∂t (uεh − uε)
2 uεh → uh as ε→ 0 where uh is piecewise affine and solves∫ T

0

∫
Ω

Σ(∇suh) : ∇ϕ =

∫ T

0

∫
Γ

gh · ϕ ∀ϕ ∈ L2(0, T ;Yh)

Yh :=
{
φ ∈ H1

0 (Ω) : φ|Tk is affine ∀ k ∈ Λh, φ ≡ 0 on Ω \ Ωh
}

I Follows from averaging property

3 uh → u as h→ 0 where u solves the effective problem

I Standard finite element calculation
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Stochastic homogenization

Standard setting of stochastic homogenization: Probability space
(ΩP ,ΣΩ,P), ergodic dynamical system (τx)x∈Rn , the random
coefficients are

Cε(x) := C(τ x
ε
ω) , Bε(x) := B(τ x

ε
ω) , Ψε(σ;x) := Ψ(σ; τ x

ε
ω) .

Theorem (Stochastic homogenization, M. Heida and B.S.)

For Σ : H1(0, T ;Rn×ns )→ H1(0, T ;Rn×ns ) from stochastic averaging,
the abstract homogenization theorem can be applied:

−∇ · Σ(∇su) = f in Ω× (0, T )

has a solution u : Ω× (0, T )→ Rn and there holds uε ⇀ u as ε→ 0.

Σ is given through a cell-problem: Given ξ : [0, T ]→ Rn×n, solve

∂tp(t, ω) ∈ ∂Ψ (z(t, ω)−B(ω) p(t, ω) ; ω) , C z = ξ + vs − p ,

with z(t) ∈ L2
sol(ΩP), v(t) ∈ L2

pot(ΩP), Σ(ξ) :=
∫

ΩP
z dP
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Conclusions

We presented a new view-point on homogenization

needle-problem approach
homogenization as two-step procedure

The method allows to

recover known results in elasticity
obtain new results in plasticity: stochastic homogenization

Important tool: Adapted grids on which a div-curl lemma holds

Thank you!


