Plasticity 00000000

A special perspective on homogenization – with an application to plasticity

Trends on Applications of Mathematics to Mechanics INdAM Workshop, Rome, 2016

Ben Schweizer

September 8, 2016

Mathematical analysis of plasticity

What can be done mathematically in "plasticity"?

```
(a personal selection)
```

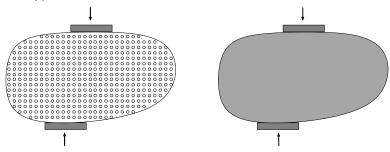
- Analysis of crystal plasticity, derivation of macro-equations
- 2 Nonlinear theories
- **Objective Starting Second Starting Second S**
 - H.-D. Alber(2000)
 - A. Visintin (2005, 2006)
 - A. Mielke & A.M. Timofte / U. Stefanelli / T. Roubicek (2007, 2008, 2013)
 - (H.-D. Alber &) S. Nesenenko (2007, 2009)
 - B.S. & M. Veneroni (2011 & 2014)
 - M. Heida & B.S. (2015 & submitted)

A description of homogenization •000 Needle problem approach 00000

Plasticity 00000000

What is homogenization?

A heterogeneous material occupies a set $\Omega \subset \mathbb{R}^3$. How does it deform under applied forces?

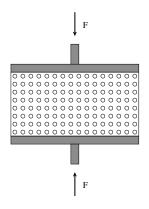


Aim of homogenization

In good approximation: the **heterogeneous** material (left) behaves like the **homogeneous** *effective* material (right).

What can we measure?

We can make experiments with a heterogeneous test-volume. We deform the specimen (shear and compression) and measure the response



Measurements yield:

- the averaged deformation $\bar{e} \in \mathbb{R}^{n \times n}$ leads to
- \bullet the averaged force $\bar{\sigma} \in \mathbb{R}^{n \times n}$

Result

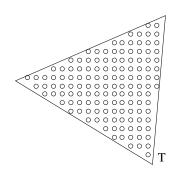
We determined the tensor ${\bf A}$ in the law

$$\bar{\sigma} = \mathbf{A} \cdot \bar{e}$$

Plasticity 00000000

Effective tensor from deformation experiment

How can we understand the effect of coefficients a_{ε} ?



- $\textbf{O} \quad \text{Consider a simplex } \mathcal{T} \subset \mathbb{R}^n \text{ and a } \\ \text{deformation tensor } \xi \in \mathbb{R}^{n \times n}$
- **2** Impose affine boundary data $U_{\xi} : \mathbb{R}^n \to \mathbb{R}^n$, $U_{\xi}(x) := \xi \cdot x$
- Solve the problem -∇ · (a_ε∇u^ε) = 0 on T with u^ε = U_ξ on ∂T

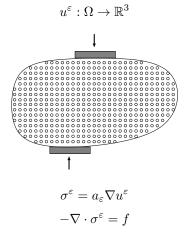
Assumption: The averaged stress is

$$\lim_{\varepsilon \to 0} \frac{1}{|\mathcal{T}|} \int_{\mathcal{T}} a_{\varepsilon} \nabla u^{\varepsilon} = A \cdot \xi$$

Under strain ξ , the average stress in the test-volume is $A \cdot \xi$

Homogenization in more mathematical terms

Heterogeneous material in $\Omega \subset \mathbb{R}^3$. The deformation is



Effective material description:

 $u^{\varepsilon}\approx u$

• deformation $u:\Omega \to \mathbb{R}^3$ with

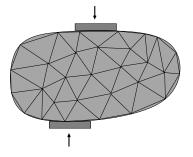
• stress tensor
$$\sigma: \Omega \to \mathbb{R}^{3 \times 3}$$

The aim of homogenization The effective law in Ω is $-\nabla \cdot \sigma = f$ with $\sigma = \mathbf{A} \cdot \nabla u$

Plasticity 00000000

Coefficients that allow averaging

In this spirit, non-periodic problems: Needle problem approach!



Assumption: The single triangle reacts on an affine deformation U_{ξ} (with $\nabla U_{\xi} \equiv \xi$) with the force $A \cdot \xi$

Definition

The coefficients a_{ε} allow averaging of the constitutive relation with $A \in \mathbb{R}^{n \times n}$ if, for simplices \mathcal{T} , solutions of

$$\begin{split} -\nabla \cdot (a_{\varepsilon} \nabla u^{\varepsilon}) &= 0 & \text{ in } \mathcal{T} \\ u^{\varepsilon} &= U_{\xi} & \text{ on } \partial \mathcal{T}, \end{split}$$

with affine boundary data U_{ξ} satisfy

$$\lim_{\varepsilon \to 0} \frac{1}{|\mathcal{T}|} \int_{\mathcal{T}} a_{\varepsilon} \nabla u^{\varepsilon} = \mathbf{A} \cdot \xi$$

The needle-problem homogenization method

Theorem (B.S. and M. Veneroni, 2011)

Assume that the coefficients a_{ε} allow averaging of the constitutive relation with $A \in \mathbb{R}^{n \times n}$.

Then: Solutions u^{ε} of $-\nabla \cdot (a_{\varepsilon} \nabla u^{\varepsilon}) = f$ on domains Ω converge to solutions u^* of $-\nabla \cdot (\mathbf{A} \cdot \nabla u^*) = f$.

The proof uses:

- triangulations
- approximate solutions
- adapted grids and a new div-curl Lemma

u^{ε}	$\stackrel{\varepsilon,h\to 0}{\longleftrightarrow}$	$u_h^{arepsilon}$
		$\not \varepsilon \to 0$
u^*	$\underset{\longleftarrow}{\overset{h\rightarrow 0}{\longleftarrow}}0$	u_h

Definition of the needle problem

Approximate solutions: defined as the solutions u_h^{ε} of the

Definition (Needle problem)

Given a Lipschitz domain $\Omega \subset \mathbb{R}^n$, a triangulation \mathscr{T}_h of $\Omega_h \subset \Omega$, and piecewise affine boundary data ψ . Function space:

 $\mathcal{N}_h := \left\{ \phi \in H^1_0(\Omega) \ : \ \phi|_{\partial T_k} \text{ is affine for all } T_k \in \mathscr{T}_h, \ \phi \equiv 0 \text{ on } \Omega \setminus \Omega_h \right\}$

Given $g_h,$ the needle problem is to find $u_h^\varepsilon \in \psi + \mathcal{N}_h$ such that

$$\int_{\Omega} a_{\varepsilon} \nabla u_h^{\varepsilon} \cdot \nabla \phi = \int_{\Gamma_h} g_h \phi \qquad \forall \phi \in \mathcal{N}_h$$

Here: f is replaced by g_h such that

$$\int_{\bigcup \partial \mathcal{T}_k} g_h \cdot \varphi = \int_\Omega f \cdot \varphi \quad \text{for piecewise affine test functions } \varphi$$

Proof (homogenization of the elastic problem)

Main part of the homogenization proof:

Lemma (Comparison of u_h^{ε} and u^{ε})

 $a_{\varepsilon} \in L^{\infty}(\Omega; \mathbb{R}^{n \times n})$ elliptic, ψ boundary values, $u^{\varepsilon} \in H^{1}(\Omega)$ solutions of original problem, $u_{h}^{\varepsilon} \in \psi + \mathcal{N}_{h}$ solutions to needle problem. If \mathscr{T}_{h} are adapted grids for $(u^{\varepsilon})_{\varepsilon}$, then

$$\lim_{h \to 0} \lim_{\varepsilon \to 0} \|u_h^\varepsilon - u^\varepsilon\|_{H^1(\Omega)} = 0.$$

Idea of proof:

- **(**) use $(u^{\varepsilon} u_{h}^{\varepsilon})$ as a test-function in the original problem
- 2) use $(u^{\varepsilon}-u_{h}^{\varepsilon})$ as a test-function in the needle problem
- 3 difference yields estimate for $\|u^{\varepsilon} u_{h}^{\varepsilon}\|_{H^{1}(T)}^{2}$
- **(**) show smallness of error terms for $\varepsilon \to 0$ and then $h \to 0$

the last step uses a div-curl lemma on each triangle

Adapted grids

Theorem (Adapted grids and div-curl lemma)

Let $\Omega \subset \mathbb{R}^n$, n = 2 or n = 3 be a bounded Lipschitz domain, $(u^{\varepsilon})_{\varepsilon}$ a bounded sequence in $H^1(\Omega)$.

- O To arbitrary h > 0 there exists Ω_h ⊂ Ω and an adapted triangulation *S*_h of Ω_h for (u^ε)_ε.
- **2** Let $(u^{\varepsilon})_{\varepsilon}$ be a sequence with $u^{\varepsilon} \rightharpoonup u$ weakly in $H^{1}(\Omega)$ and let \mathscr{T}_{h} be an adapted grid for $(u^{\varepsilon})_{\varepsilon}$. Let $(q^{\varepsilon})_{\varepsilon}$ be a sequence in $L^{2}(\Omega, \mathbb{R}^{n})$ satisfying

 $q^{\varepsilon} \rightharpoonup q$ weak in $L^{2}(\Omega)$,

 $f^{\varepsilon}:=\nabla\cdot q^{\varepsilon}\to f \text{ strong in } H^{-1}(T), \quad \text{for all } T\in \mathscr{T}_h.$

Then

$$\lim_{\varepsilon \to 0} \int_{\Omega_h} q^{\varepsilon} \cdot \nabla u^{\varepsilon} \, dx = \int_{\Omega_h} q \cdot \nabla u \, dx.$$

Idea: boundary values of u^{ε} are bounded in H^1 , hence compact in $H^{1/2}$

Plasticity as a system with hysteresis

Important in plasticity: Hysteresis!

The stress $\sigma(x, t)$ depends not only on the current deformation tensor $\nabla u(x, t)$, but also on its history:

$$\sigma(x, t) = \mathcal{F}\left(\{\nabla u(x, s) | s \in [0, t]\}\right)$$

A description of homogenization 0000

Needle problem approach 00000

Plasticity 0000000

Plasticity (Prandtl-Reuss model)

Reference domain of material: Ω , time interval: (0,T)

Variables			
displacement strain stress	$\nabla^s u$	$\begin{array}{ll} : & \Omega \times (0,T) \to \mathbb{R}^n \\ : & \Omega \times (0,T) \to \mathbb{R}^{n \times n} \\ : & \Omega \times (0,T) \to \mathbb{R}^{n \times n} \end{array}$	

with
$$\nabla^s u = \frac{1}{2} (\nabla u + (\nabla u)^T)$$

Equations

Conservation of momentum: Additive strain decomposition:

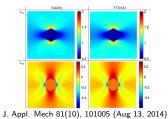
Hooke's law: Flow rule with kinematic hardening:

$$\begin{array}{rcl}
-\nabla \cdot \sigma &= f \\
\nabla^{s} u &= \underbrace{e}_{\text{elastic strain}} + \underbrace{p}_{\text{plastic strain}} \\
C\sigma &= e \\
\partial_{t} p &\in \partial \Psi(\sigma - Bp)
\end{array}$$

Given: force f, elasticity tensor C, hardening tensor B, potential Ψ

What can we expect from homogenization?

The periodicity cell remembers its deformation history



We cannot expect to find a map $\mathbb{R}^{n \times n} \ni \bar{e} \mapsto \bar{\sigma} \in \mathbb{R}^{n \times n}$ (current local strain) \mapsto (current local stress)

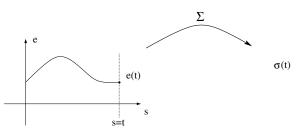
Definition (Averaging property in a system with hysteresis)

The ε -system allows averaging if there exists an operator

 $\Sigma : H^1(0,T;\mathbb{R}^{n \times n}_s) \to H^1(0,T;\mathbb{R}^{n \times n}_s)$

such that: For a simplex $\mathcal{T} \subset \mathbb{R}^n$, $\xi \in H^1(0,T; \mathbb{R}^{n \times n}_s)$ and solutions u^{ε} , e^{ε} , p^{ε} , σ^{ε} to the ε -problem on \mathcal{T} with f = 0 and $u^{\varepsilon}(t)|_{\partial \mathcal{T}} = \xi(t) \cdot x$ holds: $\int_{\mathcal{T}} \sigma^{\varepsilon}(t) \to \Sigma(\xi)(t)$

An averaging property



An evolution of strain is mapped to a stress

Theorem (Abstract homogenization, M. Heida and B.S.)

Given Ω and f, let the coefficients allow averaging with a lower semi-continuous stress operator Σ . Then the effective problem

$$-\nabla \cdot \Sigma(\nabla^s u) = f \qquad \text{ in } \Omega \times (0,T)$$

has a solution u. As $\varepsilon \to 0$, there holds $u^{\varepsilon} \rightharpoonup u$ in $H^1(0,T;H^1(\Omega))$.

 $\Sigma(\nabla^s u)(x,t) = \Sigma(\nabla^s u(x,.))(t)$

Plasticity ○○○●○○○

Needle problem for plasticity

Discretization of $\Omega_h \subset \Omega$ with grid $\mathbb{T}_h = \{\mathcal{T}_k\}_{k \in \Lambda_h}$ $\mathcal{N}_h := \{\phi \in H^1_0(\Omega) : \phi|_{\partial \mathcal{T}_k} \text{ is affine } \forall \ k \in \Lambda_h, \ \phi \equiv 0 \text{ on } \Omega \setminus \Omega_h \}$ As before: f replaced by g_h such that

$$\int_{\bigcup \partial \mathcal{T}_k} g_h \cdot \varphi = \int_\Omega f \cdot \varphi \quad \text{for piecewise affine } \varphi$$

Definition (Needle problem in plasticity)

 $\text{Find } u_h^\varepsilon \in H^1(0,T; \textcolor{red}{\mathcal{N}_h}) \text{, } e_h^\varepsilon, p_h^\varepsilon, \sigma_h^\varepsilon \in H^1(0,T; L^2(\Omega_h; \mathbb{R}_s^{n \times n})) \text{:}$

$$\int_0^T \int_{\Omega_h} \sigma_h^{\varepsilon} : \nabla \varphi = \int_0^T \int_{\bigcup \partial \mathcal{T}_k} g_h \cdot \varphi \qquad \forall \varphi \in L^2(0,T;\mathcal{N}_h) \,,$$

and almost everywhere in Ω_h holds

$$\nabla^s u_h^\varepsilon = e_h^\varepsilon + p_h^\varepsilon \ , \qquad C_\varepsilon \sigma_h^\varepsilon = e_h^\varepsilon \ , \qquad \partial_t p_h^\varepsilon \in \partial \Psi_\varepsilon \left(\sigma_h^\varepsilon - B_\varepsilon p_h^\varepsilon \right)$$

Homogenization proof

 $u_h^\varepsilon = {\rm solution}$ of the auxiliary problem, "needle problem"

Standard finite element calculation

Plasticity ○○○○○●○

Stochastic homogenization

Standard setting of stochastic homogenization: Probability space $(\Omega_{\mathcal{P}}, \Sigma_{\Omega}, \mathcal{P})$, ergodic dynamical system $(\tau_x)_{x \in \mathbb{R}^n}$, the **random** coefficients are

$$C_\varepsilon(x):=C(\tau_{\frac{x}{\varepsilon}}\omega)\,,\quad B_\varepsilon(x):=B(\tau_{\frac{x}{\varepsilon}}\omega)\,,\quad \Psi_\varepsilon(\sigma;x):=\Psi(\sigma;\tau_{\frac{x}{\varepsilon}}\omega)\,.$$

Theorem (Stochastic homogenization, M. Heida and B.S.)

For Σ : $H^1(0,T;\mathbb{R}^{n\times n}_s) \to H^1(0,T;\mathbb{R}^{n\times n}_s)$ from stochastic averaging, the abstract homogenization theorem can be applied:

$$-\nabla \cdot \Sigma(\nabla^s u) = f \qquad \text{in } \Omega \times (0,T)$$

has a solution $u: \Omega \times (0,T) \to \mathbb{R}^n$ and there holds $u^{\varepsilon} \rightharpoonup u$ as $\varepsilon \to 0$.

 Σ is given through a cell-problem: Given $\xi: [0,T] \to \mathbb{R}^{n \times n}$, solve

$$\partial_t p(t,\omega) \in \partial \Psi \left(z(t,\omega) - B(\omega) \, p(t,\omega) \, ; \, \omega \right) \, , \quad C \, z = \xi + v^s - p \, ,$$

with $z(t) \in L^2_{sol}(\Omega_{\mathcal{P}})$, $v(t) \in L^2_{pot}(\Omega_{\mathcal{P}})$, $\Sigma(\xi) := \int_{\Omega_{\mathcal{P}}} z \, d\mathcal{P}$

Conclusions

- We presented a new view-point on homogenization
 - needle-problem approach
 - homogenization as two-step procedure
- The method allows to
 - recover known results in elasticity
 - obtain new results in plasticity: stochastic homogenization
- Important tool: Adapted grids on which a div-curl lemma holds

Thank you!