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Helmholtz equation
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Graphic taken from: Acoustics Today

Sound is described by the wave equation 92p = Ap

Time-harmonic ansatz p(z,t) = u(x)e™! leads to
Helmholtz equation
—Au=uwu+f in Q

f € L?(Q) is a prescribed source



Sound absorbers

— homogenization of perforations 1 = 0

Puzzling fact: Wavelength of sound =~ 1m, holes in the wall &~ 1cm

Dirichlet condition on 992, Neumann condition along inclusions

Helmholtz equation

— Auf = wuf + f in Q¢

T

J

What is the effect of the perforation?



Notation

Inclusions: Index k € Z?~'. The single inclusion is
ci=e(Z+(k,0)) for kezi?

Number of inclusions ~ g~ (d=1)
Perforated domain:

Se=J S =0\%
kel

Limit geometry: The perforation X, is located
along the submanifold

To:= (R x {0})nQ

Normal vectors: n = n.(x) the outer normal of Q.

The interface has the upward pointing normal v = ¢4




A surprising observation

Extension: P. : L*(Q2.) — L*(£2) maps a function to its trivial extension
We always assume that w? is not a Dirichlet eigenvalue of —A on Q

@ Multiply the Helmholtz equation —Au® = w?u® + f with u®
Integrate by parts and use Poincaré — |[u®| 1oy < C

® P.uf — u strongly in L2(Q) with u € HY(Q)

Result: The limit function wu is the solution of
—Au=wu+f in Q J

— The perforation has no effect! (at leading order)

Error estimate:

lu = Pevi | 12 + IV = PV o ) < Ce™/?

C. Dérlemann, M. Heida, and B. Schweizer. Transmission conditions for the
Helmholtz-equation in perforated domains. Vietnam J. Math., 45(1-2):241-253, 2017



Interesting limits occur at first order

u®: solution on €. u: solution of the limit equation on )

Define the corrector
ut —u
€
Assume v° — v. What are the equations for v?

v =

Orders of magnitude

@ Vu is smooth, order O(1) around
inclusion (dashed line)

0 n-Vve=—1n.Vuof order O(e™?)
@ v° has variations O(1)

Functions spaces

bad: [[Vv®| p2(q.) — oo expected

£
good: ||VUE||L1(QE) < C possible u and uf near an obstacle



Let’s follow a classical advice ...

divide et Assumption. With C > 0 independent of ¢ holds
impera! [o® w0,y < € J

Two questions

© What are the equations for v? v®=0(1)
@ Why should v satisfy the WL-bound? Voe =0()

The Wh1-bound implies for some ¢ > 1, v € L'():

*
o P.v° = vdL? weak-* as measures N
o O O O =€

o P.Vv® 2 Vo + pu for some measure y with Q.
supp(p) C T'o Orders of magnitude near
o ve Ll (Q)and P.v® — vin L () an obstacle

loc loc

o ve WL(Q\Ty)




The main result

Theorem (Effective system for the corrector)

_ uf—u
€

Assume the W'1-bound, and P.v¢ — v
Then v € WH(Q\ Ty) is the unique solution of

Let u® and u be as above, v¢

—-Av = w?v in Q\ Ty
v] =J-Vu onTy
[O,v] =V-(GVu) onTy

The matrices G € R¥? and .J € R? are given by cell problems
B. Delourme, H. Haddar, and P. Joly. Approximate models for wave propagation
across thin periodic interfaces. J. Math. Pures Appl. (9), 98(1):28-71, 2012.

B. Schweizer. Effective Helmholtz problem in a domain with a Neumann sieve
perforation. J. Math. Pures Appl. 142:1-22, 2020.



Cell problems

Y2

11 d—1
Yi=—=,= x R Z:=Y\X
2°2

per

Definition: Cell problem

7O

Given ¢ € RY, seek w € H}} (Z) such that 4

—Aw =0 in Z

Ohw =mn-& ondX
Z
n: 0% — R? is the exterior normal of Z Yy
“Gradient”:
G¢:= / Vw e R?
z
llJump":
J-&:=— lim w+ lim w e R

(=0 Jiya=¢} =0 Jya=¢}



|dea of the proof: Elementary unfolding

Let p € C2°(R2) be arbitrary. Consider V : Z — R,

Vi(y) = > v (e(k+ ) e(e(k +1))

Derive estimates for VS using [[Vv®|| 12y < Coe™'/? and conclude
o= win HY(Z)
as € — 0. Here w is the cell-problem solution for

1
ITol Jr,

Furthermore, boundary integrals also converge:

ej~/ nv5<p—>|l"0|ej-/ nw
ox 0%

=

&= Vup € R?

Conclude that, in the convergence
PV 2 Vo + 1y
there holds = —GVuHY |,



The Helmholtz resonator

Recall the puzzling fact: Wavelength of sound ~ 1m, holes ~ lcm

The operator (—A)~! in L2(Q\ X.) has an eigenvalue p. with

LIV LR
He = Ho = = IT.|

L: length of the channel, V: volume of the resonator, A: opening area

Result: For fixed frequency, the resonator can be arbitrarily small



The three-scale geometry

L2 Q).: the complex domain, union of
S. P/E @ limit domain Q (below z-axis)
Ce {[IANATINNMIANNANAIN fre | o channels C.

Z1

@ the strip S. above the channels
channels distributed with periodicity ¢,
width is ae?
Qo

We investigate the Helmholtz problem in two dimensions (n = 2)

—Auf — WPt =f in Q.

Opu® =0 on 0%,

P. Donato, A. Lamacz, B. Schweizer. Sound absorption by perforated walls along

boundaries. Applicable Analysis, 2020



Trivial limit
Trivial limit problem
—Au—wiu=f in Qg

Quantities of interest:

w® : Qo — R, w® =

and “uf behind the perforated wall”, I = (0,1): horizontal cross-section

1 €(L+V)
v I — R, T E_V/ u®(x1,x2) dasy
eL

Theorem (System for limits v — v and w® — w)

2

—Aw —w*w=0 in Qg

Opw =V (0 +w?v on Ty

and O,w = 0 on 90y \ T'g. The quantity v solves

(_8% + (% - “2)) v= LVU|F°




A flux quantity

New quantity: Vertical flux j¢ together with its limit j.

) 1
(@) = 1= O’ (2) Lo (2)
where 1¢_ is the characteristic function of the channels
Up to a subsequence ¢ — 0: There exists a measure j. € M(R?) with
supp(j«) C T'g and, as measures,
T e (@) = () 1
Why this scaling?
@ uF on the upper end of Qy and v* differ by O(1)
@ Hence 0yu® is of order O(1/¢) in the channels
@ Accordingly, j¢ = O(1/¢3) in L* and j¢ = O(1) in L!

Geometric flow rule: The density satisfies

jan) = F(wlen) — u(21,0))

Mass conservation:
j=Voiv+Vw?v



Conclusions

o Study: Helmholtz equation in a perforated domain
o O(1) effect not present, u® — u
o O(e) effect expressed with a limit system for v

@ The proof uses a W!1(€.) bound and limit measures

Thank you!





