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Helmholtz equation

Graphic taken from: Acoustics Today
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A domain Ω ⊂ Rn

Sound is described by the wave equation ∂2
t p = ∆p

Time-harmonic ansatz p(x, t) = u(x)eiωt leads to

Helmholtz equation

−∆u = ω2u+ f in Ω

f ∈ L2(Ω) is a prescribed source



Sound absorbers

−→ homogenization of perforations x1

x2

Ω
Ωε = Ω \ Σε

εx2 = 0

x1 = 0

Puzzling fact: Wavelength of sound ≈ 1m, holes in the wall ≈ 1cm

Dirichlet condition on ∂Ω, Neumann condition along inclusions

Helmholtz equation

−∆uε = ω2uε + f in Ωε

What is the effect of the perforation?



Notation

Inclusions: Index k ∈ Zd−1. The single inclusion is

Σεk := ε (Σ + (k, 0)) for k ∈ Zd−1

Number of inclusions ∼ ε−(d−1)

Perforated domain:

Σε :=
⋃
k∈Iε

Σεk Ωε := Ω \ Σ̄ε

Limit geometry: The perforation Σε is located
along the submanifold

Γ0 :=
(
Rd−1 × {0}

)
∩ Ω

Normal vectors: n = nε(x) the outer normal of Ωε

The interface has the upward pointing normal ν = ed

x1

x2

Ω
Ωε = Ω \ Σε

εx2 = 0

x1 = 0

x1

x2

Ω

Γ0

ν

x2 = 0

x1 = 0



A surprising observation

Extension: Pε : L2(Ωε)→ L2(Ω) maps a function to its trivial extension
We always assume that ω2 is not a Dirichlet eigenvalue of −∆ on Ω

Multiply the Helmholtz equation −∆uε = ω2uε + f with uε

Integrate by parts and use Poincaré −→ ‖uε‖H1(Ωε) ≤ C

Pεuε → u strongly in L2(Ω) with u ∈ H1(Ω)

Result: The limit function u is the solution of

−∆u = ω2u+ f in Ω

−→ The perforation has no effect! (at leading order)

Error estimate:

‖u− Pεuε‖L2(Ω) + ‖∇u− Pε∇uε‖L2(Ω) ≤ Cε
1/2

C. Dörlemann, M. Heida, and B. Schweizer. Transmission conditions for the

Helmholtz-equation in perforated domains. Vietnam J. Math., 45(1-2):241–253, 2017



Interesting limits occur at first order

uε: solution on Ωε u: solution of the limit equation on Ω

Define the corrector

vε :=
uε − u
ε

Assume vε → v. What are the equations for v?

Orders of magnitude

∇u is smooth, order O(1) around
inclusion (dashed line)

n · ∇vε = − 1
εn · ∇u of order O(ε−1)

vε has variations O(1)

Functions spaces

bad: ‖∇vε‖L2(Ωε) →∞ expected

good: ‖∇vε‖L1(Ωε) ≤ C possible
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Let’s follow a classical advice ...

divide et
impera!

Assumption. With C > 0 independent of ε holds

‖vε‖W 1,1(Ωε) ≤ C

Two questions

1 What are the equations for v?

2 Why should vε satisfy the W 1,1-bound?

The W 1,1-bound implies for some q > 1, v ∈ L1(Ω):

Pεvε
∗
⇀ v dLd weak-∗ as measures

Pε∇vε
∗
⇀ ∇v + µ for some measure µ with

supp(µ) ⊂ Γ0

v ∈ Lqloc(Ω) and Pεvε → v in L1
loc(Ω)

v ∈W 1,1(Ω \ Γ0)

Ωε
ε

vε = O(1)

∇vε = O(ε−1)

Orders of magnitude near
an obstacle



The main result

Theorem (Effective system for the corrector)

Let uε and u be as above, vε := uε−u
ε

Assume the W 1,1-bound, and Pεvε → v

Then v ∈W 1,1(Ω \ Γ0) is the unique solution of

−∆v = ω2v in Ω \ Γ0

[v] = J · ∇u on Γ0

[∂νv] = ∇ · (G∇u) on Γ0

The matrices G ∈ Rd×d and J ∈ Rd are given by cell problems

B. Delourme, H. Haddar, and P. Joly. Approximate models for wave propagation

across thin periodic interfaces. J. Math. Pures Appl. (9), 98(1):28–71, 2012.

B. Schweizer. Effective Helmholtz problem in a domain with a Neumann sieve

perforation. J. Math. Pures Appl. 142:1-22, 2020.



Cell problems

Y :=

(
−1

2
,

1

2

)d−1

per

× R Z := Y \ Σ

Definition: Cell problem

Given ξ ∈ Rd, seek w ∈ H1
loc(Z) such that

−∆w = 0 in Z
∂nw = n · ξ on ∂Σ

n : ∂Σ→ Rd is the exterior normal of Z

y1

y2

Σ

Z
Y

“Gradient”:

Gξ :=

∫
Z

∇w ∈ Rd

“Jump”:

J · ξ := − lim
ζ→∞

∫
{yd=ζ}

w + lim
ζ→−∞

∫
{yd=ζ}

w ∈ R



Idea of the proof: Elementary unfolding

Let ϕ ∈ C∞c (Ω) be arbitrary. Consider V εϕ : Z → R,

V εϕ (y) :=
1

|Iε|
∑
k∈Iε

vε(ε(k + y))ϕ(ε(k + y))

Derive estimates for V εϕ using ‖∇vε‖L2(Ωε) ≤ C0 ε
−1/2 and conclude

V εϕ,0 ⇀ w in Ḣ1(Z)

as ε→ 0. Here w is the cell-problem solution for

ξ := − 1

|Γ0|

∫
Γ0

∇uϕ ∈ Rd

Furthermore, boundary integrals also converge:

ej ·
∫
∂Σε

n vε ϕ→ |Γ0|ej ·
∫
∂Σ

nw

Conclude that, in the convergence

Pε∇vε
∗
⇀ ∇v + µ ,

there holds µ = −G∇uHd−1bΓ0



The Helmholtz resonator

Recall the puzzling fact: Wavelength of sound ≈ 1m, holes ≈ 1cm

Σ ε
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Γ
ε

(ε)

(ε )O

O

3(ε)O

Ω

R

The operator (−∆)−1 in L2(Ω \ Σε) has an eigenvalue µε with

µε → µ0 =
LV

A
= lim
ε→0

Lε|Rε|
|Γε|

L: length of the channel, V : volume of the resonator, A: opening area

Result: For fixed frequency, the resonator can be arbitrarily small



The three-scale geometry

Sε

Cε

Ω0

x1

x2

Lε

V ε

Ωε: the complex domain, union of

limit domain Ω0 (below x1-axis)

channels Cε

the strip Sε above the channels

channels distributed with periodicity ε,
width is αε3

We investigate the Helmholtz problem in two dimensions (n = 2)

−∆uε − ω2uε = f in Ωε

∂nu
ε = 0 on ∂Ωε

P. Donato, A. Lamacz, B. Schweizer. Sound absorption by perforated walls along

boundaries. Applicable Analysis, 2020



Trivial limit

Trivial limit problem

−∆u− ω2u = f in Ω0

Quantities of interest:

wε : Ω0 → R, wε :=
uε − u
ε

and “uε behind the perforated wall”, I = (0, 1): horizontal cross-section

vε : I → R, x1 7→
1

εV

∫ ε(L+V )

εL

uε(x1, x2) dx2

Theorem (System for limits vε → v and wε → w)

−∆w − ω2w = 0 in Ω0

∂nw = V (∂2
1 + ω2)v on Γ0

and ∂nw = 0 on ∂Ω0 \ Γ0. The quantity v solves(
−∂2

1 +
( α

LV
− ω2

))
v =

α

LV
u|Γ0



A flux quantity

New quantity: Vertical flux jε together with its limit j∗

jε(x) :=
1

Lε2
∂2u

ε(x)1Cε(x) ,

where 1Cε is the characteristic function of the channels
Up to a subsequence ε→ 0: There exists a measure j∗ ∈M(R2) with
supp(j∗) ⊂ Γ̄0 and, as measures,

jε
∗
⇀ j∗ , j∗(x) = j(x1)H1|Γ0

Why this scaling?

uε on the upper end of Ω0 and vε differ by O(1)

Hence ∂2u
ε is of order O(1/ε) in the channels

Accordingly, jε = O(1/ε3) in L∞ and jε = O(1) in L1

Geometric flow rule: The density satisfies

j(x1) =
α

L
(v(x1)− u(x1, 0))

Mass conservation:
j = V ∂2

1v + V ω2 v



Conclusions

Study: Helmholtz equation in a perforated domain

O(1) effect not present, uε → u

O(ε) effect expressed with a limit system for v

The proof uses a W 1,1(Ωε) bound and limit measures

Thank you!




