Homogenization of domain perforations and sound absorption

Ben Schweizer

Wave Phenomena conference, February 17, 2022

Helmholtz equation

Graphic taken from: Acoustics Today

Sound is described by the wave equation $\partial_t^2 p = \Delta p$ Time-harmonic ansatz $p(x,t) = u(x)e^{i\omega t}$ leads to

Helmholtz equation

$$-\Delta u = \omega^2 u + f \qquad \text{ in } \Omega$$

 $f\in L^2(\Omega)$ is a prescribed source

Sound absorbers

Puzzling fact: Wavelength of sound \approx 1m, holes in the wall \approx 1cm

Dirichlet condition on $\partial\Omega$, Neumann condition along inclusions

Helmholtz equation

$$-\Delta u^{\varepsilon} = \omega^2 u^{\varepsilon} + f \qquad \text{ in } \Omega_{\varepsilon}$$

What is the effect of the perforation?

Notation

Inclusions: Index $k \in \mathbb{Z}^{d-1}$. The single inclusion is

$$\Sigma_k^{\varepsilon} := \varepsilon \left(\Sigma + (k, 0) \right) \text{ for } k \in \mathbb{Z}^{d-1}$$

Number of inclusions $\sim \varepsilon^{-(d-1)}$ Perforated domain:

$$\Sigma_{\varepsilon} := \bigcup_{k \in I_{\varepsilon}} \Sigma_k^{\varepsilon} \qquad \Omega_{\varepsilon} := \Omega \setminus \bar{\Sigma}_{\varepsilon}$$

Limit geometry: The perforation Σ_{ε} is located along the submanifold

$$\Gamma_0 := \left(\mathbb{R}^{d-1} \times \{0\} \right) \cap \Omega$$

Normal vectors: $n = n_{\varepsilon}(x)$ the outer normal of Ω_{ε} The interface has the upward pointing normal $\nu = e_d$

A surprising observation

Extension: $\mathcal{P}_{\varepsilon}: L^2(\Omega_{\varepsilon}) \to L^2(\Omega)$ maps a function to its trivial extension We always assume that ω^2 is not a Dirichlet eigenvalue of $-\Delta$ on Ω

- Multiply the Helmholtz equation $-\Delta u^{\varepsilon} = \omega^2 u^{\varepsilon} + f$ with u^{ε} Integrate by parts and use Poincaré $\longrightarrow \|u^{\varepsilon}\|_{H^1(\Omega_{\varepsilon})} \leq C$
- $\mathcal{P}_{\varepsilon}u^{\varepsilon} \to u$ strongly in $L^{2}(\Omega)$ with $u \in H^{1}(\Omega)$

Result: The limit function u is the solution of

$$-\Delta u = \omega^2 u + f$$
 in Ω

 \rightarrow The perforation has no effect! (at leading order)

Error estimate:

$$\|u - \mathcal{P}_{\varepsilon} u^{\varepsilon}\|_{L^{2}(\Omega)} + \|\nabla u - \mathcal{P}_{\varepsilon} \nabla u^{\varepsilon}\|_{L^{2}(\Omega)} \le C\varepsilon^{1/2}$$

C. Dörlemann, M. Heida, and B. Schweizer. Transmission conditions for the Helmholtz-equation in perforated domains. *Vietnam J. Math.*, 45(1-2):241–253, 2017

Interesting limits occur at first order

 $u^{\varepsilon}:$ solution on Ω_{ε} $\qquad u:$ solution of the limit equation on Ω

Define the corrector

$$v^{\varepsilon} := \frac{u^{\varepsilon} - u}{\varepsilon}$$

Assume $v^{\varepsilon} \rightarrow v$. What are the equations for v?

Orders of magnitude

∇u is smooth, order O(1) around inclusion (dashed line)

•
$$n \cdot \nabla v^{\varepsilon} = -\frac{1}{\varepsilon} n \cdot \nabla u$$
 of order $O(\varepsilon^{-1})$

• v^{ε} has variations O(1)

Functions spaces

bad:
$$\|\nabla v^{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon})} \to \infty$$
 expected
good: $\|\nabla v^{\varepsilon}\|_{L^{1}(\Omega_{\varepsilon})} \leq C$ possible

u and u^{ε} near an obstacle

Let's follow a classical advice ...

divide et impera!

Assumption. With C>0 independent of ε holds $\|v^{\varepsilon}\|_{W^{1,1}(\Omega_{\varepsilon})} \leq C$

Two questions

- **()** What are the equations for v?
- **2** Why should v^{ε} satisfy the $W^{1,1}$ -bound?

The $W^{1,1}$ -bound implies for some q > 1, $v \in L^1(\Omega)$:

- $\mathcal{P}_{\varepsilon}v^{\varepsilon} \stackrel{*}{\rightharpoonup} v \, d\mathcal{L}^d$ weak-* as measures
- $\mathcal{P}_{\varepsilon} \nabla v^{\varepsilon} \stackrel{*}{\rightharpoonup} \nabla v + \mu$ for some measure μ with $\operatorname{supp}(\mu) \subset \Gamma_0$
- $v \in L^q_{\mathrm{loc}}(\Omega)$ and $\mathcal{P}_{\varepsilon} v^{\varepsilon} \to v$ in $L^1_{\mathrm{loc}}(\Omega)$
- $v \in W^{1,1}(\Omega \setminus \Gamma_0)$

Orders of magnitude near an obstacle Theorem (Effective system for the corrector)

Let u^{ε} and u be as above, $v^{\varepsilon} := \frac{u^{\varepsilon} - u}{\varepsilon}$ Assume the $W^{1,1}$ -bound, and $\mathcal{P}_{\varepsilon}v^{\varepsilon} \to v$ Then $v \in W^{1,1}(\Omega \setminus \Gamma_0)$ is the unique solution of

$$\begin{array}{rcl} -\Delta v &= \omega^2 v & \text{ in } \Omega \setminus \Gamma_0 \\ [v] &= J \cdot \nabla u & \text{ on } \Gamma_0 \\ [\partial_\nu v] &= \nabla \cdot (G \nabla u) & \text{ on } \Gamma_0 \end{array}$$

The matrices $G \in \mathbb{R}^{d \times d}$ and $J \in \mathbb{R}^d$ are given by cell problems

B. Delourme, H. Haddar, and P. Joly. Approximate models for wave propagation across thin periodic interfaces. J. Math. Pures Appl. (9), 98(1):28–71, 2012.

B. Schweizer. Effective Helmholtz problem in a domain with a Neumann sieve perforation. J. Math. Pures Appl. 142:1-22, 2020.

Cell problems

$$Y := \left(-\frac{1}{2}, \frac{1}{2}\right)_{\rm per}^{d-1} \times \mathbb{R} \qquad \qquad Z := Y \setminus \Sigma$$

Definition: Cell problem

Given $\xi \in \mathbb{R}^d$, seek $w \in H^1_{\mathrm{loc}}(Z)$ such that

$$\begin{array}{rcl} -\Delta w &= 0 & \text{ in } Z \\ \partial_n w &= n \cdot \xi & \text{ on } \partial \Sigma \end{array}$$

 $n:\partial\Sigma\to\mathbb{R}^d$ is the exterior normal of Z

"Gradient":

$$G\,\xi := \int_Z \nabla w \in \mathbb{R}^d$$

"Jump":

$$J \cdot \xi := -\lim_{\zeta \to \infty} \int_{\{y_d = \zeta\}} w + \lim_{\zeta \to -\infty} \int_{\{y_d = \zeta\}} w \in \mathbb{R}$$

Idea of the proof: Elementary unfolding

Let $\varphi \in C^\infty_c(\Omega)$ be arbitrary. Consider $V^\varepsilon_\varphi: Z \to \mathbb{R}$,

$$V_{\varphi}^{\varepsilon}(y) := \frac{1}{|I_{\varepsilon}|} \sum_{k \in I_{\varepsilon}} v^{\varepsilon}(\varepsilon(k+y)) \, \varphi(\varepsilon(k+y))$$

Derive estimates for $V_{\varphi}^{\varepsilon}$ using $\|\nabla v^{\varepsilon}\|_{L^{2}(\Omega_{\varepsilon})} \leq C_{0} \varepsilon^{-1/2}$ and conclude

$$V^{\varepsilon}_{\varphi,0} \rightharpoonup w \text{ in } \dot{H}^1(Z)$$

as $\varepsilon \to 0$. Here w is the cell-problem solution for

$$\xi := -\frac{1}{|\Gamma_0|} \int_{\Gamma_0} \nabla u \, \varphi \in \mathbb{R}^d$$

Furthermore, boundary integrals also converge:

$$e_j \cdot \int_{\partial \Sigma_{\varepsilon}} n \, v^{\varepsilon} \, \varphi \to |\Gamma_0| e_j \cdot \int_{\partial \Sigma} n \, w$$

Conclude that, in the convergence

$$\mathcal{P}_{\varepsilon}\nabla v^{\varepsilon} \stackrel{*}{\rightharpoonup} \nabla v + \mu \,,$$

there holds $\mu = -G \nabla u \mathcal{H}^{d-1} \lfloor_{\Gamma_0}$

The Helmholtz resonator

Recall the puzzling fact: Wavelength of sound ≈ 1 m, holes ≈ 1 cm

The operator $(-\Delta)^{-1}$ in $L^2(\Omega \setminus \Sigma_{\varepsilon})$ has an eigenvalue μ_{ε} with

$$\mu_{\varepsilon} \to \mu_0 = \frac{LV}{A} = \lim_{\varepsilon \to 0} \frac{L_{\varepsilon} |R_{\varepsilon}|}{|\Gamma_{\varepsilon}|}$$

L: length of the channel, V: volume of the resonator, A: opening area

Result: For fixed frequency, the resonator can be arbitrarily small

The three-scale geometry

We investigate the Helmholtz problem in two dimensions (n = 2)

$$\begin{split} -\Delta u^{\varepsilon} - \omega^2 u^{\varepsilon} &= f & \text{ in } \Omega_{\varepsilon} \\ \partial_n u^{\varepsilon} &= 0 & \text{ on } \partial \Omega_{\varepsilon} \end{split}$$

P. Donato, A. Lamacz, B. Schweizer. Sound absorption by perforated walls along boundaries. *Applicable Analysis*, 2020

Trivial limit

Trivial limit problem

$$-\Delta u - \omega^2 u = f \qquad \text{ in } \Omega_0$$

Quantities of interest:

$$w^{\varepsilon}:\Omega_0 \to \mathbb{R}, \qquad w^{\varepsilon}:=\frac{u^{\varepsilon}-u}{\varepsilon}$$

and " u^{ε} behind the perforated wall", I = (0,1): horizontal cross-section

$$v^{\varepsilon}: I \to \mathbb{R}, \qquad x_1 \mapsto \frac{1}{\varepsilon V} \int_{\varepsilon L}^{\varepsilon (L+V)} u^{\varepsilon}(x_1, x_2) \, dx_2$$

Theorem (System for limits $v^{\varepsilon} \rightarrow v$ and $w^{\varepsilon} \rightarrow w$) $-\Delta w - \omega^2 w = 0$ in Ω_0 $\partial_n w = V (\partial_1^2 + \omega^2) v$ on Γ_0

and $\partial_n w = 0$ on $\partial \Omega_0 \setminus \Gamma_0$. The quantity v solves

$$\left(-\partial_1^2 + \left(\frac{\alpha}{LV} - \omega^2\right)\right)v = \frac{\alpha}{LV}u|_{\Gamma_0}$$

A flux quantity

New quantity: Vertical flux j^{ε} together with its limit j_*

$$j^{\varepsilon}(x) := \frac{1}{L\varepsilon^2} \,\partial_2 u^{\varepsilon}(x) \,\mathbf{1}_{C_{\varepsilon}}(x) \,,$$

where $\mathbf{1}_{C_{\varepsilon}}$ is the characteristic function of the channels Up to a subsequence $\varepsilon \to 0$: There exists a measure $j_* \in \mathcal{M}(\mathbb{R}^2)$ with $\operatorname{supp}(j_*) \subset \overline{\Gamma}_0$ and, as measures,

$$j^{\varepsilon} \stackrel{*}{\rightharpoonup} j_{*}, \qquad j_{*}(x) = j(x_{1}) \mathcal{H}^{1}|_{\Gamma_{0}}$$

Why this scaling?

- u^{ε} on the upper end of Ω_0 and v^{ε} differ by O(1)
- Hence $\partial_2 u^{\varepsilon}$ is of order $O(1/\varepsilon)$ in the channels
- Accordingly, $j^{\varepsilon}=O(1/\varepsilon^3)$ in L^{∞} and $j^{\varepsilon}=O(1)$ in L^1

Geometric flow rule: The density satisfies

$$j(x_1) = \frac{\alpha}{L}(v(x_1) - u(x_1, 0))$$

Mass conservation:

$$j = V \partial_1^2 v + V \omega^2 \, v$$

Conclusions

- Study: Helmholtz equation in a perforated domain
- O(1) effect not present, $u^{\varepsilon} \rightarrow u$
- $O(\varepsilon)$ effect expressed with a limit system for v
- The proof uses a $W^{1,1}(\Omega_{\varepsilon})$ bound and limit measures

Thank you!