Homogenization of domain perforations and sound absorption

Ben Schweizer

Wave Phenomena conference, February 17, 2022

Helmholtz equation

A domain $\Omega \subset \mathbb{R}^{n}$

Graphic taken from: Acoustics Today
Sound is described by the wave equation $\partial_{t}^{2} p=\Delta p$ Time-harmonic ansatz $p(x, t)=u(x) e^{i \omega t}$ leads to

Helmholtz equation

$$
-\Delta u=\omega^{2} u+f \quad \text { in } \Omega
$$

$f \in L^{2}(\Omega)$ is a prescribed source

Sound absorbers

\longrightarrow homogenization of perforations

Puzzling fact: Wavelength of sound $\approx 1 \mathrm{~m}$, holes in the wall $\approx 1 \mathrm{~cm}$
Dirichlet condition on $\partial \Omega$, Neumann condition along inclusions
Helmholtz equation

$$
-\Delta u^{\varepsilon}=\omega^{2} u^{\varepsilon}+f \quad \text { in } \Omega_{\varepsilon}
$$

What is the effect of the perforation?

Notation

Inclusions: Index $k \in \mathbb{Z}^{d-1}$. The single inclusion is

$$
\Sigma_{k}^{\varepsilon}:=\varepsilon(\Sigma+(k, 0)) \text { for } k \in \mathbb{Z}^{d-1}
$$

Number of inclusions $\sim \varepsilon^{-(d-1)}$
Perforated domain:

$$
\Sigma_{\varepsilon}:=\bigcup_{k \in I_{\varepsilon}} \Sigma_{k}^{\varepsilon} \quad \Omega_{\varepsilon}:=\Omega \backslash \bar{\Sigma}_{\varepsilon}
$$

Limit geometry: The perforation Σ_{ε} is located along the submanifold

$$
\Gamma_{0}:=\left(\mathbb{R}^{d-1} \times\{0\}\right) \cap \Omega
$$

Normal vectors: $n=n_{\varepsilon}(x)$ the outer normal of Ω_{ε} The interface has the upward pointing normal $\nu=e_{d}$

A surprising observation

Extension: $\mathcal{P}_{\varepsilon}: L^{2}\left(\Omega_{\varepsilon}\right) \rightarrow L^{2}(\Omega)$ maps a function to its trivial extension We always assume that ω^{2} is not a Dirichlet eigenvalue of $-\Delta$ on Ω

- Multiply the Helmholtz equation $-\Delta u^{\varepsilon}=\omega^{2} u^{\varepsilon}+f$ with u^{ε} Integrate by parts and use Poincaré $\longrightarrow\left\|u^{\varepsilon}\right\|_{H^{1}\left(\Omega_{\varepsilon}\right)} \leq C$
- $\mathcal{P}_{\varepsilon} u^{\varepsilon} \rightarrow u$ strongly in $L^{2}(\Omega)$ with $u \in H^{1}(\Omega)$

Result: The limit function u is the solution of

$$
-\Delta u=\omega^{2} u+f \quad \text { in } \Omega
$$

\longrightarrow The perforation has no effect! (at leading order)
Error estimate:

$$
\left\|u-\mathcal{P}_{\varepsilon} u^{\varepsilon}\right\|_{L^{2}(\Omega)}+\left\|\nabla u-\mathcal{P}_{\varepsilon} \nabla u^{\varepsilon}\right\|_{L^{2}(\Omega)} \leq C \varepsilon^{1 / 2}
$$

C. Dörlemann, M. Heida, and B. Schweizer. Transmission conditions for the Helmholtz-equation in perforated domains. Vietnam J. Math., 45(1-2):241-253, 2017

Interesting limits occur at first order

u^{ε} : solution on $\Omega_{\varepsilon} \quad u$: solution of the limit equation on Ω
Define the corrector

$$
v^{\varepsilon}:=\frac{u^{\varepsilon}-u}{\varepsilon}
$$

Assume $v^{\varepsilon} \rightarrow v$. What are the equations for v ?

Orders of magnitude

- ∇u is smooth, order $O(1)$ around inclusion (dashed line)
- $n \cdot \nabla v^{\varepsilon}=-\frac{1}{\varepsilon} n \cdot \nabla u$ of order $O\left(\varepsilon^{-1}\right)$
- v^{ε} has variations $O(1)$

Functions spaces

$$
\text { bad: }\left\|\nabla v^{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \rightarrow \infty \text { expected }
$$

good: $\left\|\nabla v^{\varepsilon}\right\|_{L^{1}\left(\Omega_{\varepsilon}\right)} \leq C$ possible

Let's follow a classical advice ...

divide et impera!

Assumption. With $C>0$ independent of ε holds

$$
\left\|v^{\varepsilon}\right\|_{W^{1,1}\left(\Omega_{\varepsilon}\right)} \leq C
$$

Two questions

(1) What are the equations for v ?
(2) Why should v^{ε} satisfy the $W^{1,1}$-bound?

The $W^{1,1}$-bound implies for some $q>1, v \in L^{1}(\Omega)$:

- $\mathcal{P}_{\varepsilon} v^{\varepsilon} \xrightarrow{*} v d \mathcal{L}^{d}$ weak-* as measures
- $\mathcal{P}_{\varepsilon} \nabla v^{\varepsilon} \xrightarrow{*} \nabla v+\mu$ for some measure μ with $\operatorname{supp}(\mu) \subset \Gamma_{0}$
- $v \in L_{\mathrm{loc}}^{q}(\Omega)$ and $\mathcal{P}_{\varepsilon} v^{\varepsilon} \rightarrow v$ in $L_{\mathrm{loc}}^{1}(\Omega)$
- $v \in W^{1,1}\left(\Omega \backslash \Gamma_{0}\right)$

Orders of magnitude near an obstacle

The main result

Theorem (Effective system for the corrector)
Let u^{ε} and u be as above, $v^{\varepsilon}:=\frac{u^{\varepsilon}-u}{\varepsilon}$
Assume the $W^{1,1}$-bound, and $\mathcal{P}_{\varepsilon} v^{\varepsilon} \rightarrow v$
Then $v \in W^{1,1}\left(\Omega \backslash \Gamma_{0}\right)$ is the unique solution of

$$
\begin{aligned}
-\Delta v & =\omega^{2} v & & \text { in } \Omega \backslash \Gamma_{0} \\
{[v] } & =J \cdot \nabla u & & \text { on } \Gamma_{0} \\
{\left[\partial_{\nu} v\right] } & =\nabla \cdot(G \nabla u) & & \text { on } \Gamma_{0}
\end{aligned}
$$

The matrices $G \in R^{d \times d}$ and $J \in \mathbb{R}^{d}$ are given by cell problems
B. Delourme, H. Haddar, and P. Joly. Approximate models for wave propagation across thin periodic interfaces. J. Math. Pures Appl. (9), 98(1):28-71, 2012.
B. Schweizer. Effective Helmholtz problem in a domain with a Neumann sieve perforation. J. Math. Pures Appl. 142:1-22, 2020.

Cell problems

$$
Y:=\left(-\frac{1}{2}, \frac{1}{2}\right)_{\text {per }}^{d-1} \times \mathbb{R} \quad Z:=Y \backslash \Sigma
$$

Definition: Cell problem

Given $\xi \in \mathbb{R}^{d}$, seek $w \in H_{\mathrm{loc}}^{1}(Z)$ such that

$$
\begin{aligned}
-\Delta w & =0 & & \text { in } Z \\
\partial_{n} w & =n \cdot \xi & & \text { on } \partial \Sigma
\end{aligned}
$$

$n: \partial \Sigma \rightarrow \mathbb{R}^{d}$ is the exterior normal of Z

"Gradient":

$$
G \xi:=\int_{Z} \nabla w \in \mathbb{R}^{d}
$$

"Jump":

$$
J \cdot \xi:=-\lim _{\zeta \rightarrow \infty} \int_{\left\{y_{d}=\zeta\right\}} w+\lim _{\zeta \rightarrow-\infty} \int_{\left\{y_{d}=\zeta\right\}} w \in \mathbb{R}
$$

Idea of the proof: Elementary unfolding

Let $\varphi \in C_{c}^{\infty}(\Omega)$ be arbitrary. Consider $V_{\varphi}^{\varepsilon}: Z \rightarrow \mathbb{R}$,

$$
V_{\varphi}^{\varepsilon}(y):=\frac{1}{\left|I_{\varepsilon}\right|} \sum_{k \in I_{\varepsilon}} v^{\varepsilon}(\varepsilon(k+y)) \varphi(\varepsilon(k+y))
$$

Derive estimates for $V_{\varphi}^{\varepsilon}$ using $\left\|\nabla v^{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leq C_{0} \varepsilon^{-1 / 2}$ and conclude

$$
V_{\varphi, 0}^{\varepsilon} \rightharpoonup w \text { in } \dot{H}^{1}(Z)
$$

as $\varepsilon \rightarrow 0$. Here w is the cell-problem solution for

$$
\xi:=-\frac{1}{\left|\Gamma_{0}\right|} \int_{\Gamma_{0}} \nabla u \varphi \in \mathbb{R}^{d}
$$

Furthermore, boundary integrals also converge:

$$
e_{j} \cdot \int_{\partial \Sigma_{\varepsilon}} n v^{\varepsilon} \varphi \rightarrow\left|\Gamma_{0}\right| e_{j} \cdot \int_{\partial \Sigma} n w
$$

Conclude that, in the convergence

$$
\mathcal{P}_{\varepsilon} \nabla v^{\varepsilon} \stackrel{*}{\rightharpoonup} \nabla v+\mu,
$$

there holds $\mu=-G \nabla u \mathcal{H}^{d-1}\left\lfloor_{\Gamma_{0}}\right.$

The Helmholtz resonator

Recall the puzzling fact: Wavelength of sound $\approx 1 \mathrm{~m}$, holes $\approx 1 \mathrm{~cm}$

The operator $(-\Delta)^{-1}$ in $L^{2}\left(\Omega \backslash \Sigma_{\varepsilon}\right)$ has an eigenvalue μ_{ε} with

$$
\mu_{\varepsilon} \rightarrow \mu_{0}=\frac{L V}{A}=\lim _{\varepsilon \rightarrow 0} \frac{L_{\varepsilon}\left|R_{\varepsilon}\right|}{\left|\Gamma_{\varepsilon}\right|}
$$

L : length of the channel, V : volume of the resonator, A : opening area
Result: For fixed frequency, the resonator can be arbitrarily small

Ω_{ε} : the complex domain, union of

- limit domain Ω_{0} (below x_{1}-axis)
- channels C_{ε}
- the strip S_{ε} above the channels channels distributed with periodicity ε, width is $\alpha \varepsilon^{3}$

We investigate the Helmholtz problem in two dimensions ($n=2$)

$$
\begin{aligned}
-\Delta u^{\varepsilon}-\omega^{2} u^{\varepsilon}=f & \text { in } \Omega_{\varepsilon} \\
\partial_{n} u^{\varepsilon}=0 & \text { on } \partial \Omega_{\varepsilon}
\end{aligned}
$$

P. Donato, A. Lamacz, B. Schweizer. Sound absorption by perforated walls along
boundaries. Applicable Analysis, 2020

Trivial limit problem

$$
-\Delta u-\omega^{2} u=f \quad \text { in } \Omega_{0}
$$

Quantities of interest:

$$
w^{\varepsilon}: \Omega_{0} \rightarrow \mathbb{R}, \quad w^{\varepsilon}:=\frac{u^{\varepsilon}-u}{\varepsilon}
$$

and " u^{ε} behind the perforated wall", $I=(0,1)$: horizontal cross-section

$$
v^{\varepsilon}: I \rightarrow \mathbb{R}, \quad x_{1} \mapsto \frac{1}{\varepsilon V} \int_{\varepsilon L}^{\varepsilon(L+V)} u^{\varepsilon}\left(x_{1}, x_{2}\right) d x_{2}
$$

Theorem (System for limits $v^{\varepsilon} \rightarrow v$ and $w^{\varepsilon} \rightarrow w$)

$$
\begin{aligned}
-\Delta w-\omega^{2} w & =0 & & \text { in } \Omega_{0} \\
\partial_{n} w & =V\left(\partial_{1}^{2}+\omega^{2}\right) v & & \text { on } \Gamma_{0}
\end{aligned}
$$

and $\partial_{n} w=0$ on $\partial \Omega_{0} \backslash \Gamma_{0}$. The quantity v solves

$$
\left(-\partial_{1}^{2}+\left(\frac{\alpha}{L V}-\omega^{2}\right)\right) v=\left.\frac{\alpha}{L V} u\right|_{\Gamma_{0}}
$$

A flux quantity

New quantity: Vertical flux j^{ε} together with its limit j_{*}

$$
j^{\varepsilon}(x):=\frac{1}{L \varepsilon^{2}} \partial_{2} u^{\varepsilon}(x) \mathbf{1}_{C_{\varepsilon}}(x)
$$

where $1_{C_{\varepsilon}}$ is the characteristic function of the channels Up to a subsequence $\varepsilon \rightarrow 0$: There exists a measure $j_{*} \in \mathcal{M}\left(\mathbb{R}^{2}\right)$ with $\operatorname{supp}\left(j_{*}\right) \subset \bar{\Gamma}_{0}$ and, as measures,

$$
j^{\varepsilon} \stackrel{*}{\rightharpoonup} j_{*}, \quad j_{*}(x)=\left.j\left(x_{1}\right) \mathcal{H}^{1}\right|_{\Gamma_{0}}
$$

Why this scaling?

- u^{ε} on the upper end of Ω_{0} and v^{ε} differ by $O(1)$
- Hence $\partial_{2} u^{\varepsilon}$ is of order $O(1 / \varepsilon)$ in the channels
- Accordingly, $j^{\varepsilon}=O\left(1 / \varepsilon^{3}\right)$ in L^{∞} and $j^{\varepsilon}=O(1)$ in L^{1}

Geometric flow rule: The density satisfies

$$
j\left(x_{1}\right)=\frac{\alpha}{L}\left(v\left(x_{1}\right)-u\left(x_{1}, 0\right)\right)
$$

Mass conservation:

$$
j=V \partial_{1}^{2} v+V \omega^{2} v
$$

Conclusions

- Study: Helmholtz equation in a perforated domain
- $O(1)$ effect not present, $u^{\varepsilon} \rightarrow u$
- $O(\varepsilon)$ effect expressed with a limit system for v
- The proof uses a $W^{1,1}\left(\Omega_{\varepsilon}\right)$ bound and limit measures

Thank you!

