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Why outflow conditions?

I the natural conditions!

I an analytical and numerical challenge
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Flow equations

I Variables saturation s : Ω→ R
pressure p : Ω→ R
velocity v : Ω→ Rn

I Equations Darcy-law v = −k(s)∇p
mass conservation ∂ts+∇ · v = f
capillary pressure p = pc(s)

Together: Richards’ Equation (neglecting gravity)

∂ts = ∇ · (k(s)∇pc(s)) + f

With the Kirchhoff transformation, Φ′(s) = k(s)p′c(s):

Solve for saturation s and pressure u

∂ts = ∆u+ f, u = Φ(s)
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Physical description of outflow boundary

We model a porous medium in
contact with void space (gas)

medium

porous

void

space

droplet with
"large" curvature

I Water can only leave the porous medium: n · v ≥ 0
I The capillary pressure (=water-pressure) can never exceed 0

— otherwise water exits quickly: u ≤ 0
I If the capillary pressure is below 0, no water exits: (n · v) u = 0

(u = 0 if and only if pc(s) = 0)
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Outflow boundary conditions

u ≤ 0
n · ∇u ≤ 0
one is an equality

The condition can be
encoded in a weak form
as an inequality!

Variational inequality

Demand u ≤ 0 on Γout and, for all ϕ with ϕ ≤ 0 on Γout,∫
ΩT

∂ts(ϕ− u) +∇u · ∇(ϕ− u) ≥ 0.

(ϕ− u) is arbitrary in the interior, hence ∂ts = ∆u.
Then, formally,∫

Γout×(0,T )
n · ∇u (ϕ− u) =

∫
ΩT

∆u (ϕ− u) +∇u · ∇(ϕ− u) ≥ 0

Hence n · ∇u ≤ 0 and u < 0 implies n · ∇u = 0 on Γout.
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Outflow condition

u

j=n v.

(u,−∂nu) ∈ F
for the Graph F ⊂ R2.

Regularized condition

u

F (u)
δ

Regularized outflow condition

−n · ∇uδ = Fδ(uδ) on Γout

Aim

Solutions (sδ, uδ) of∫
ΩT

{sδ ∂tϕ−∇uδ∇ϕ}+
∫

Ω
s0ϕ(0, .)−

∫
Γout,T

Fδ(uδ)ϕ = 0∀ϕ

converge, as δ → 0, to solutions (s, u) of the outflow problem.
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Applications

I Non-degenerate Richards equation

I Degenerate Richards equation

I Two-phase flow

Alt & DiBenedetto Nonsteady flow of water and oil through inhomogeneous porous media. Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4), 12(3):335–392, 1985.

Alt, Luckhaus, Visintin On nonstationary flow through porous media. Ann. Mat. Pura Appl. (4), 136:303–316,
1984.

Arbogast The existence of weak solutions to single porosity and simple dual-porosity models of
two-phase incompressible flow. Nonlinear Anal., 19(11):1009–1031, 1992.

Kröner & Luckhaus Flow of oil and water in a porous medium. J. Differential Equations, 55(2):276–288, 1984.

Pop & S. Regularization schemes for non-degenerate Richards equations and outflow conditions. (in
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S. Regularization of outflow problems in unsaturated porous media with dry regions. J.
Differential Equations 237:278-306, 2007.

Lenzinger & S. Two-phase flow equations with outflow boundary conditions in the hydrophobic-hydrophilic
case. (Preprint 2008, submitted)

Ohlberger & S. Modelling of interfaces in unsaturated porous media. Conference Proceedings of the AIMS,
2008.
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Definition (Variational solution of the limit problem)

(s, u) ∈ L2(ΩT )× L2(ΩT ) with u = Φ(s) a.e. is a variational
solution, if ∂ts ∈ L2(ΩT ) with s(0) = s0, ∇u ∈ L2(ΩT ), u = 0 on
ΓD, u ≤ 0 on Γout, and∫

ΩT

∂tsH(ϕ− u) +∇u · ∇[H(ϕ− u)] ≥ 0

for all ϕ ∈ L2(0, T ;H1(Ω)) with ϕ = 0 on ΓD and ϕ ≤ 0 on Γout,
and all H : R→ R of class C1

b , monotonically increasing with
H(0) = 0.

Theorem

There exists a unique variational solution.
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Uniqueness: We use H = sign.
Existence: The equality for uδ reads∫

ΩT

∂tsδH(ϕ− uδ) +∇uδ∇H(ϕ− uδ)

= −
∫

(0,T )×Γout

Fδ(uδ)H(ϕ− uδ) ≥ 0.

The last inequality by distinguishing two cases.
For the limit δ → 0 we use

lim sup
δ→0

∫
ΩT

∇uδ∇H(ϕ− uδ) ≤
∫

ΩT

∇u∇H(ϕ− u).

Conclusions

I non-degenerate Φ implies strong convergences

I regularized outflow condition relates to energy loss

−→ Existence theorem
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Degenerate case. Under appropriate assumptions ...

Theorem (B. S. 2007)

(sδ, uδ)→ (s, u) weakly in L∞(ΩT )× L2(0, T ;H1(Ω)). With v = −∇u

∂ts+ div v = 0 in D′(ΩT )

and u ∈ Φ(s) a.e. in ΩT . On the outflow boundary, as distributions,

v · n ≥ 0, K(s)−K(a0) ≤ 0
(v · n) · (K(s)−K(a0)) ≥ 0.

Note: pc(a0) = 0, the function s 7→ K(s) := k2(s)s is monotone.
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On the proof

Lemma (Defect measure)

For a measure ν ∈M(Γout,T ) with ν ≥ 0, for δ → 0,

(K(sδ) vδ · n)|Γout,T
⇀ (K(s) v · n)|Γout,T

− ν in D′(Γout,T ).

void
space

medium
porous

In the bulk term

∇[K(sδ)] · vδ = (∂sK(sδ)∇sδ +∇xK(sδ))·
·(−kδ(sδ)∂sρδ(sδ)∇sδ − kδ(sδ)∇xρδ(sδ))

second terms converge strongly in L2(ΩT )
the singular part is generated by

−∂sK(sδ) kδ(sδ)∂sρδ(sδ)|∇sδ|2 ≤ 0
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Two-phase flow

Both phases (liquid and gas) satisfy Darcy’s law and
mass-conservation.

Two-phase flow

∂ts1 = ∇ · (k1(s1)∇p1) + f1

∂ts2 = ∇ · (k2(s1)∇p2) + f2

s1 + s2 = 1
p1 − p2 = pc(s1)

Outflow condition

p2 = 0
p1 ≤ 0
−∂np1 ≥ 0
p1 < 0⇒ ∂np1 = 0

c

s1a ao b

k
1

2k

p (s)
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Global pressure. Define

p = p2 +
∫ s

s̄

k1

k1 + k2
p′c

Why using the global pressure?

p satisfies an equation of the kind div(k∇p) = 0.

I maximum principle. p has global maximum at boundary

I regularity estimates. p as regular as boundary values

Problem

We do not have a boundary condition for p!

Lemma
Under appropriate assumptions ...

The saturation remains bounded away from critical values.
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Maximum principle

I In an inner maximum of s:
I ∂ts ≥ 0 implies ∆p1 ≥ 0 and ∆p2 ≤ 0
I pc(s) has a maximum, hence ∆[pc(s)] ≤ 0

I In a maximum of s at outflow boundary:
I geometric condition: n · ∇s ≥ 0 and n · ∇pc(s) ≥ 0
I By p2 = 0, the point is simultaneously maximum of the global

pressure, hence n · ∇p ≥ 0
I By n · ∇p1 ∼ n · ∇p+ n · ∇pc ≥ 0: no outflow, p1 = 0.

Lemma

The saturation remains bounded away from critical values.

For a proof:

1. Regularize outflow condition

2. Discretize in time
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Under appropriate assumptions ...

Theorem (M. Lenzinger and B. S. 2008)

(sh, ph1 , p
h
2 )→ (s, p1, p2) for (δ, h)→ 0. The limit satisfies

∂ts−∇ · (k1(s)∇p1) = 0 in D′(ΩT ),
−∂ts−∇ · (k1(s)∇p2) = 0 in D′(ΩT ),

p1 − p2 = pc(s(.)) a.e. in ΩT .

At the outflow boundary we have p2 = 0, p1 ≤ 0 in the sense of traces
and v1 · n ≥ 0 in the distributional sense. For a.e. t ∈ (0, T ) holds

−
∫

Ω

(Pc(s(t))− Pc(s0)) +
∫

Ω

s(t)(φ1 − φ2)(t)
∣∣∣∣t
0

−
∫

Ωt

s ∂t(φ1 − φ2) +
∑
j

∫
Ωt

kj(s)∇pj ∇(φj − pj) ≥ 0

for all φj ∈ C1(ΩT ), φj = pDj on ΓD, φ1 ≤ 0 and φ2 = 0 on Γout.
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Conclusions

I Most natural boundary conditions: “Neumann” and “Outflow”

I The outflow be aproximated well with the

Regularized outflow condition

−n · ∇uδ = Fδ(uδ) on Γout
I Rigorous results for Richards and two-phase flow

Open problems in degenerate cases

I uniqueness in degenerate Richards

I degenerate regions in two-phase flow

Thank You!
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