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Two-phase flow equations

Modelling two-phase flow

Pressure of oil
Pressure of water D2
Saturation of oil UL =:u
Saturation of water wus =1 —wu
Capillary pressure pe(u)
Permeabilities ki = ki(x,u)

A porous material

k
Ou ="V - (k1 (u)Vp1) 2 ki
—0iu =V - (ka(u)Vp2)
P1— P2 = pc(u)

o
—
=
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Two-phase flow equations

The capillary pressure

The capillary pressure curve is
multi-valued. In particular: At
saturation 1 every large pressure
can be attained.

Entry of water in hydrophobic material /
‘0 1
p1 — P2 € pe(u),
with p. = pe(z,u), z € Q, u € [0,1].
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Oil trapping

Oil trapping

Interface condition.

The pressures p; and ps ha-
ve no jumps. We therefore de-
mand:

pe(.,u(.)) is continuous.

0 u* 1 u

Second interface condition for

- +
po law pa law Bou = V - (kr (1) V1)
U~ u~ U is the continuity of the flux,
p~p* prp

k~0 k>0 k1 (U)anplheft =k (u)anp1|m'ght

Both conditions were rigorously derived by Bertsch, Dal Passo, van Duijn.
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Oil trapping

One dimensional equations

Adding the equations yields, with K (u) = k1 (u) + ko (u),
V- (K(2,u)Vp — k2 (u)V[pe(u)]) = 0.
In the one-dimensional case
K(z,u)0:p — k2 (u)pL.(u)0pu = —qo
for some gop € R. This results in

k k1 k
k10:p = _EIQO + %awu

F = f(z,u) — g(x,u)0,u

f(u) and g(u) are degenerate, both ~ kj(u) ~ u?.
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Homogenization problem

Setting of the homogenization problem

Oyuf + 0, F° =0onT* =1 UT'Y
FE_: fine material _F'E — fa(x’ue) — ge<x7u5)awu8

. .
I3 coarse .materlal F*® and pS(x,u®) continuous in Ze
permeabilities are k4 > k_

capillary pressures pf(s) <p; (s)  with degenerate f=(u) and g% (u).

Effect: In re the oil remains oy ‘ A A A
trapped.

When u® reaches the value u* in
I'%., the saturation vanishes in I'®..
Because of k1(0) = 0, no further
flow is possible. \
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Homogenization problem

Guessing homogenized equations

u® with average u®, 0,u® with average

0.
slope v, / U
uy +u_ = 2u’ {yy/ I .
+ - i s
st us) = i (u) B
,/7\
uy with average slope uy , o~ \g
slope v_
Up gz + U g = 20° P
X
8upj (u+) Utz = Oup, (u*) U— x

The microscopic slopes (vy,v_) satisfy

FHus) = g s os = F(us) — g (uYo
6upj(“+)v+ + 8up; (u_)v_ = upi (U+) Uy z + 8up; (U—) U— g
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Homogenization problem

Effective equations

One determines, starting from u? and v9:
First ug, then ug 5, then vy. Now we can determine the flux as

F(u®,0%) = [ (uy) — gF (uy)oy

Result (wishful thinking). Let u® be a sequence of solutions to the e-problem
with
u® — ud Fe —~FY in L2

7

Then
0w’ + 0, F° =0
with FO = F(u°, 9,u°).

Note: Effective equations were derived by formal asymptotics:
First equations in J.van Duijn, A. Mikelié, and S. Pop,
other equations in J.van Duijn, H. Eichel, R. Helmig, and S. Pop.
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Homogenization problem

Homogenization for a positive saturation

Under the assumption u® > ¢ > 0 on (0,T") x €: ok!
m A priori estimate ||u®|| g1 (rey < ¢(6)

m Two-scale convergence, characterize limit functions

u® = up(z,t,y) = u_(2,t)1(0,1)(y) + ug (2, 1)1 ,2)(y)
Ozulpe — vo(w,t,y) = v_(z,t)1(0,1)(y) + vy (2, 1)11,2)(y)

m For non-linear terms use a compactness result:

Lemma (Compactness)

For all h € C°([0,1],R) holds

h(uf ()1 (x) — h(u_(z))1% (x) — O strongly in L.

Ben Schweizer (TU Dortmund) Homogenization of oil trapping equations Mai 2008 9/12



The free boundary problem

The free boundary problem

t -4

critical [J X

We study, for § > 0 and € > 0, the |
. . I

free boundary separating the regi- [
on of uniformly positive saturation Al ety posiive
from the rest. H

)

‘L X

X5t)=inf{z € (0,L)N(2eZ +¢): u(x —0,t) >4}
Proposition.
The map ¢t — X3 (t) is monotonically non-decreasing.

The following limits hold pointwise for almost every t,

X9(t) = lim X5+(1),  XS() = lim X2, (1),

m

Ben Schweizer (TU Dortmund)

Homogenization of oil trapping equations Mai 2008



The free boundary problem

Limit equations with the free boundary description

Let X be the upper semicontinuous
representative of X.

We decompose (0,7) x Q into the
good region G := {(x,t) : & > X (t)}
and a remainder, the region B.

One shows ...
m Everywhere holds 9,u° = 9, F°
m In G holds F? = F(u", 9,u°)
m In B holds F° =0 and u® = u*/2

0,u’ is a non-negative measure, concentrated on 9B N 0G
... and the singular part vanishes.
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The free boundary problem

Theorem and Conclusions

Theorem

Let (u®, F®) be entropy solutions. Then, for a subsequence € — 0
u® =l in L, F°— F°in L? weakly.

The limits satisfy the conservation law 0;u® + 0, F° = 0 in the distributional
sense. There holds 0,u° € L'(Qr) and

F° = F(u®,0,u") almost everywhere in Q.

Conclusions. We have derived an effective limit equation. In particular:

We have determined the correct formal calculation

The e-solutions may touch 0, but the effect vanishes in G for e — 0

The limit equation allows to decide the question |B| > 0.
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