Homogenization of oil trapping equations

Ben Schweizer

TU Dortmund

Mai 2008

Two-phase flow equations

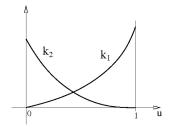
Modelling two-phase flow

A porous material

Variables

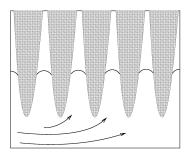
Pressure of oil Pressure of water Saturation of oil Saturation of water Capillary pressure Permeabilities $\begin{array}{l} p_1 =: p \\ p_2 \\ u_1 =: u \\ u_2 = 1 - u \\ p_c(u) \\ k_i = k_i(x,u) \end{array}$

 $\partial_t u = \nabla \cdot (k_1(u)\nabla p_1)$ $-\partial_t u = \nabla \cdot (k_2(u)\nabla p_2)$ $p_1 - p_2 = p_c(u)$



Equations

The capillary pressure



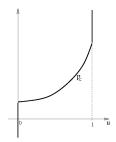
Entry of water in hydrophobic material

Capillary pressure law

$$p_1 - p_2 \in p_c(u),$$

with
$$p_c = p_c(x, u)$$
, $x \in \Omega$, $u \in [0, 1]$.

The capillary pressure curve is **multi-valued.** In particular: At saturation 1 *every* large pressure can be attained.



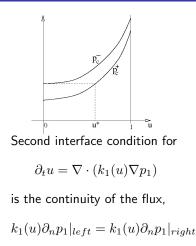
Oil trapping

Interface condition.

The pressures p_1 and p_2 have no jumps. We therefore demand:

$$p_c(., u(.))$$
 is continuous.

p_c^- law	p_c^+ law
$u \approx 0$	$u\approx u^*$
$p \approx p^*$	$p \approx p^*$
$k \approx 0$	k > 0



Both conditions were rigorously derived by Bertsch, Dal Passo, van Duijn.

One dimensional equations

Adding the equations yields, with $K(u) = k_1(u) + k_2(u)$,

$$\nabla \cdot (K(x, u)\nabla p - k_2(u)\nabla [p_c(u)]) = 0.$$

In the one-dimensional case

$$K(x,u)\partial_x p - k_2(u)p'_c(u)\partial_x u = -q_0$$

for some $q_0 \in \mathbb{R}$. This results in

$$k_1 \partial_x p = -\frac{k_1}{K} q_0 + \frac{k_1 k_2}{K} \partial_x u$$

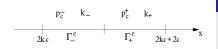
1D-Equations

$$\partial_t u + \partial_x F = 0$$

 $F = f(x, u) - g(x, u)\partial_x u$

f(u) and g(u) are degenerate, both $\sim k_1(u) \sim u^2$.

Setting of the homogenization problem



 $\begin{array}{l} \Gamma_{-}^{\varepsilon}\text{: fine material} \\ \Gamma_{+}^{\varepsilon}\text{: coarse material} \\ \text{permeabilities are } k_{+} > k_{-} \\ \text{capillary pressures } p_{c}^{+}(s) < p_{c}^{-}(s) \end{array}$

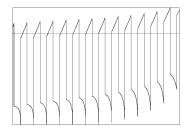
Effect: In Γ^{ε}_{+} the oil remains trapped.

When u^{ε} reaches the value u^* in Γ^{ε}_+ , the saturation vanishes in Γ^{ε}_- . Because of $k_1(0) = 0$, no further flow is possible.

Equations

$$\begin{array}{l} \partial_t u^{\varepsilon} + \partial_x F^{\varepsilon} = 0 \text{ on } \Gamma^{\varepsilon} = \Gamma^{\varepsilon}_{-} \cup \Gamma^{\varepsilon}_{+} \\ F^{\varepsilon} = f^{\varepsilon}(x, u^{\varepsilon}) - g^{\varepsilon}(x, u^{\varepsilon}) \partial_x u^{\varepsilon} \\ F^{\varepsilon} \text{ and } p^{\varepsilon}_c(x, u^{\varepsilon}) \text{ continuous in } \mathbb{Z}\varepsilon \end{array}$$

with degenerate
$$f^{\varepsilon}(u)$$
 and $g^{\varepsilon}(u)$.



Homogenization problem

Guessing homogenized equations

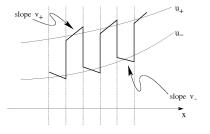
 u^{ε} with average $u^{0}\text{, }\partial_{x}u^{\varepsilon}$ with average $v^{0}.$

$$u_{+} + u_{-} = 2u^{0}$$

 $p_{c}^{+}(u_{+}) = p_{c}^{-}(u_{-})$

 u_{\pm} with average slope $u_{\pm,x}$

$$\begin{split} u_{+,x} + u_{-,x} &= 2v^0 \\ \partial_u p_c^+(u_+) \, u_{+,x} &= \partial_u p_c^-(u_-) \, u_{-,x} \end{split}$$



The microscopic slopes (v_+,v_-) satisfy

$$f^{+}(u_{+}) - g^{+}(u_{+})v_{+} = f^{-}(u_{-}) - g^{-}(u_{-})v_{-}$$
$$\partial_{u}p_{c}^{+}(u_{+})v_{+} + \partial_{u}p_{c}^{-}(u_{-})v_{-} = \partial_{u}p_{c}^{+}(u_{+})u_{+,x} + \partial_{u}p_{c}^{-}(u_{-})u_{-,x}$$

Effective equations

One determines, starting from u^0 and v^0 : First u_{\pm} , then $u_{\pm,x}$, then v_{\pm} . Now we can determine the flux as

$$\mathcal{F}(u^0, v^0) := f^+(u_+) - g^+(u_+)v_+$$

Result (wishful thinking). Let u^{ε} be a sequence of solutions to the ε -problem with

$$u^{\varepsilon} \rightharpoonup u^{0}, \qquad F^{\varepsilon} \rightharpoonup F^{0} \quad \text{in } L^{2}.$$

Then

$$\begin{split} \partial_t u^0 + \partial_x F^0 &= 0 \\ \text{with } F^0 &= \mathcal{F}(u^0, \partial_x u^0). \end{split}$$

Note: Effective equations were derived by formal asymptotics: First equations in *J.van Duijn, A. Mikelić, and S. Pop,* other equations in *J.van Duijn, H. Eichel, R. Helmig, and S. Pop.*

Homogenization for a positive saturation

Under the assumption $u^{\varepsilon} \geq \delta > 0$ on $(0,T) \times \Omega$: ok!

- A priori estimate $\|u^{\varepsilon}\|_{H^1(\Gamma^{\varepsilon})} \leq c(\delta)$
- Two-scale convergence, characterize limit functions

$$u^{\varepsilon} \rightharpoonup u_0(x, t, y) = u_-(x, t) \mathbf{1}_{(0,1)}(y) + u_+(x, t) \mathbf{1}_{(1,2)}(y)$$

$$\partial_x u^{\varepsilon} \mathbf{1}_{\Gamma^{\varepsilon}} \rightharpoonup v_0(x, t, y) = v_-(x, t) \mathbf{1}_{(0,1)}(y) + v_+(x, t) \mathbf{1}_{(1,2)}(y)$$

For non-linear terms use a compactness result:

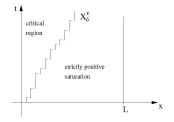
Lemma (Compactness)

For all $h \in C^0([0,1],\mathbb{R})$ holds

$$h(u^{\varepsilon}(x))\mathbf{1}_{-}^{\varepsilon}(x) - h(u_{-}(x))\mathbf{1}_{-}^{\varepsilon}(x) \to 0$$
 strongly in L^{2} .

The free boundary problem

We study, for $\delta > 0$ and $\varepsilon > 0$, the free boundary separating the region of uniformly positive saturation from the rest.



$$X^{\varepsilon}_{\delta}(t) = \inf \left\{ x \in (0,L) \cap (2\varepsilon \mathbb{Z} + \varepsilon) : \ u^{\varepsilon}(x-0,t) \ge \delta \right\}$$

Proposition.

1 The map $t \mapsto X^{\varepsilon}_{\delta}(t)$ is monotonically non-decreasing.

2 The following limits hold pointwise for almost every t,

$$X^0_{\delta}(t) = \lim_{\varepsilon \to 0} X^{\varepsilon_k}_{\delta}(t), \qquad X^0_0(t) = \lim_{\delta \to 0} X^0_{\delta_m}(t).$$

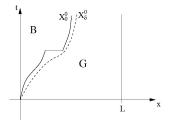
Limit equations with the free boundary description

Let X be the upper semicontinuous representative of X_0^0 .

We decompose $(0,T) \times \Omega$ into the good region $G := \{(x,t) : x > X(t)\}$ and a remainder, the region B.

One shows ...

- Everywhere holds $\partial_t u^0 = \partial_x F^0$
- $\blacksquare \ \mbox{In } G \ \mbox{holds} \ F^0 = \mathcal{F}(u^0,\partial_x u^0)$
- \blacksquare In B holds $F^0=0$ and $u^0=u^*/2$
- $\partial_x u^0$ is a non-negative measure, concentrated on $\partial B \cap \partial G$... and the singular part vanishes.



Theorem and Conclusions

Theorem

Let $(u^{\varepsilon}, F^{\varepsilon})$ be entropy solutions. Then, for a subsequence $\varepsilon \to 0$

$$u^{\varepsilon} \rightharpoonup u^{0} \text{ in } L^{\infty}_{w*}, \quad F^{\varepsilon} \rightharpoonup F^{0} \text{ in } L^{2} \text{ weakly.}$$

The limits satisfy the conservation law $\partial_t u^0 + \partial_x F^0 = 0$ in the distributional sense. There holds $\partial_x u^0 \in L^1(\Omega_T)$ and

$$F^0 = \mathcal{F}(u^0, \partial_x u^0)$$
 almost everywhere in Ω_T .

Conclusions. We have derived an effective limit equation. In particular:

- **1** We have determined the correct formal calculation
- **2** The ε -solutions may touch 0, but the effect vanishes in G for $\varepsilon \to 0$
- 3 The limit equation allows to decide the question |B| > 0.