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Two-phase flow equations

Modelling two-phase flow

A porous material

Variables
Pressure of oil p1 =: p
Pressure of water p2

Saturation of oil u1 =: u
Saturation of water u2 = 1− u
Capillary pressure pc(u)
Permeabilities ki = ki(x, u)

Equations

∂tu = ∇ · (k1(u)∇p1)
−∂tu = ∇ · (k2(u)∇p2)

p1 − p2 = pc(u)
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Two-phase flow equations

The capillary pressure

Entry of water in hydrophobic material

Capillary pressure law

p1 − p2 ∈ pc(u),

with pc = pc(x, u), x ∈ Ω, u ∈ [0, 1].

The capillary pressure curve is
multi-valued. In particular: At
saturation 1 every large pressure
can be attained.
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Oil trapping

Oil trapping

Interface condition.
The pressures p1 and p2 ha-
ve no jumps. We therefore de-
mand:

pc(., u(.)) is continuous.

p−c law p+
c law

u ≈ 0 u ≈ u∗
p ≈ p∗ p ≈ p∗
k ≈ 0 k > 0

Second interface condition for

∂tu = ∇ · (k1(u)∇p1)

is the continuity of the flux,

k1(u)∂np1|left = k1(u)∂np1|right

Both conditions were rigorously derived by Bertsch, Dal Passo, van Duijn.
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Oil trapping

One dimensional equations

Adding the equations yields, with K(u) = k1(u) + k2(u),

∇ · (K(x, u)∇p− k2(u)∇[pc(u)]) = 0.

In the one-dimensional case

K(x, u)∂xp− k2(u)p′c(u)∂xu = −q0

for some q0 ∈ R. This results in

k1∂xp = −k1

K
q0 +

k1k2

K
∂xu

1D-Equations

∂tu+ ∂xF = 0
F = f(x, u)− g(x, u)∂xu

f(u) and g(u) are degenerate, both ∼ k1(u) ∼ u2.
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Homogenization problem

Setting of the homogenization problem

Γε−: fine material
Γε+: coarse material
permeabilities are k+ > k−
capillary pressures p+

c (s) < p−c (s)

Equations

∂tu
ε + ∂xF

ε = 0 on Γε = Γε− ∪ Γε+
F ε = fε(x, uε)− gε(x, uε)∂xuε

F ε and pεc(x, u
ε) continuous in Zε

with degenerate fε(u) and gε(u).

Effect: In Γε+ the oil remains
trapped.
When uε reaches the value u∗ in
Γε+, the saturation vanishes in Γε−.
Because of k1(0) = 0, no further
flow is possible.
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Homogenization problem

Guessing homogenized equations

uε with average u0, ∂xu
ε with average

v0.

u+ + u− = 2u0

p+
c (u+) = p−c (u−)

u± with average slope u±,x

u+,x + u−,x = 2v0

∂up
+
c (u+)u+,x = ∂up

−
c (u−)u−,x

The microscopic slopes (v+, v−) satisfy

f+(u+)− g+(u+)v+ = f−(u−)− g−(u−)v−
∂up

+
c (u+)v+ + ∂up

−
c (u−)v− = ∂up

+
c (u+)u+,x + ∂up

−
c (u−)u−,x
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Homogenization problem

Effective equations

One determines, starting from u0 and v0:
First u±, then u±,x, then v±. Now we can determine the flux as

F(u0, v0) := f+(u+)− g+(u+)v+

Result (wishful thinking). Let uε be a sequence of solutions to the ε-problem
with

uε ⇀ u0, F ε ⇀ F 0 in L2.

Then

∂tu
0 + ∂xF

0 = 0

with F 0 = F(u0, ∂xu
0).

Note: Effective equations were derived by formal asymptotics:
First equations in J.van Duijn, A. Mikelić, and S. Pop,
other equations in J.van Duijn, H. Eichel, R. Helmig, and S. Pop.
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Homogenization problem

Homogenization for a positive saturation

Under the assumption uε ≥ δ > 0 on (0, T )× Ω: ok!

A priori estimate ‖uε‖H1(Γε) ≤ c(δ)

Two-scale convergence, characterize limit functions

uε ⇀ u0(x, t, y) = u−(x, t)1(0,1)(y) + u+(x, t)1(1,2)(y)
∂xu

ε1Γε ⇀ v0(x, t, y) = v−(x, t)1(0,1)(y) + v+(x, t)1(1,2)(y)

For non-linear terms use a compactness result:

Lemma (Compactness)

For all h ∈ C0([0, 1],R) holds

h(uε(x))1ε−(x)− h(u−(x))1ε−(x)→ 0 strongly in L2.
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The free boundary problem

The free boundary problem

We study, for δ > 0 and ε > 0, the
free boundary separating the regi-
on of uniformly positive saturation
from the rest.

Xε
δ (t) = inf {x ∈ (0, L) ∩ (2εZ + ε) : uε(x− 0, t) ≥ δ}

Proposition.

1 The map t 7→ Xε
δ (t) is monotonically non-decreasing.

2 The following limits hold pointwise for almost every t,

X0
δ (t) = lim

ε→0
Xεk

δ (t), X0
0 (t) = lim

δ→0
X0
δm

(t).
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The free boundary problem

Limit equations with the free boundary description

Let X be the upper semicontinuous
representative of X0

0 .

We decompose (0, T ) × Ω into the
good region G := {(x, t) : x > X(t)}
and a remainder, the region B.

One shows ...

Everywhere holds ∂tu
0 = ∂xF

0

In G holds F 0 = F(u0, ∂xu
0)

In B holds F 0 = 0 and u0 = u∗/2

∂xu
0 is a non-negative measure, concentrated on ∂B ∩ ∂G

... and the singular part vanishes.
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The free boundary problem

Theorem and Conclusions

Theorem

Let (uε, F ε) be entropy solutions. Then, for a subsequence ε→ 0

uε ⇀ u0 in L∞w∗, F ε ⇀ F 0 in L2 weakly.

The limits satisfy the conservation law ∂tu
0 + ∂xF

0 = 0 in the distributional
sense. There holds ∂xu

0 ∈ L1(ΩT ) and

F 0 = F(u0, ∂xu
0) almost everywhere in ΩT .

Conclusions. We have derived an effective limit equation. In particular:

1 We have determined the correct formal calculation

2 The ε-solutions may touch 0, but the effect vanishes in G for ε→ 0

3 The limit equation allows to decide the question |B| > 0.
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