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Strange behavior of light: Two examples WMsrifios findlos matm-maiarls
Perfect transmission

Shortest Paths

r!fi " Fermat's principle of .
L the fastest path:

Light finds the

fastest way to reach
the destination,

normal

interface
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Numerical solution
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Strange behavior of light: Two examples WMsrifios findlos matm-maiarls
Perfect transmission

Variables:
Electric field E
Magnetic field H

Simplification: Maxwell’s Equations

Time harmonic solutions

H, B~ et curl £ = wuH
curl H = —iweF

Remarks:

Vacuum: p=¢e¢=1

Material parameter

Ime < conductivity
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Strange behavior of light: Two examples

Veselago (1968)

Properties of materials with negative
index, Maxwell equations

If ny > 0 and ny < 0, then light
should be refracted “backward”.

Solutions for positive and negative index

Negative index meta-materials
Perfect transmission

But ... in Maxwell’s Equations

Ree < 0 possible
1 is always 1

Re pe < 0: light can not travel in
the medium

Negative Index: ¢ and p negative!

Computer grafics: Negative refraction
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Strange behavior of light: Two examples Memsiiive s mreis-mmeierEs
Perfect transmission

Experimental construction of Meta-Materials

> Pendry et al. (~ 2000) suggest a split ring construction

A negative index meta-material

» Experiments confirm the negative index
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Strange behavior of light: Two examples

Negative index meta-materials
Perfect transmission

Observation: Light hits a metal layer with holes. Even though the holes

have sub-wavelength dimensions, the light can exit at the other side.
Ebbesen, T. W. and Lezec, H. J. and Ghaemi, H. F. and Thio, T. and Wolff, P. A. Extraordinary optical
transmission through sub-wavelength hole arrays, Letters to Nature 391, 1998.

Porto, J. A. and Garcia-Vidal, F. J. and Pendry, J. B. Transmission Resonances on Metallic Gratings with
Very Narrow Slits, Phys. Rev. Lett. 14, 1999.

Mary, A. and Rodrigo, Sergio G. and Martin-Moreno, L. and Garcia-Vidal, F. J., Holey metal films: From
extraordinary transmission to negative-index behavior, Physical Review B 80, 2009.

Cao, Qing and Lalanne, Philippe Negative Role of Surface Plasmons in the Transmission of Metallic
Gratings with Very Narrow Slits, Phys. Rev. Lett. 5, 2002.

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel Perturbative approach for surface
plasmon effects on flat interfaces periodically corrugated by subwavelength apertures Physical Review B 68,
2003
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Perfect transmission through sub-wavelength structures

Effective system
Mathematical result
Transmission properties

We consider the Helmholtz equation V - (a(z)Vu(z)) = —k?u(z) or even

V- (a(z)Vu(z)) =0

Let a be +1 for z; > 0 and —1 for 1 < 0, w > 0 arbitrary

1 <0
a=—1

u(x1, x2) = exp(wzy) sin(wxs)

Then u is
and
and a(x)0y, u(z) is

1 >0
a=+1

u(z1, z2) = exp(—wr) sin(wzs)

harmonic
continuous
continuous

Similarly, solutions of the Helmholtz equation can be obtained

— we found a wave solution that localizes at the interface
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Effective system
Perfect transmission through sub-wavelength structures Mathematical result
Transmission properties

Later, 7 > 0 stands for the size of the holes ...
curl By = dwpoH,
curl H, = —iwe,goky,

Wave number k and wavelength \ = 27” Further assumptions:

invariance in direction x3
magnetic transverse polarization H = (0,0, u)

2D Helmholtz equation for H, = (0,0, u,) with u, = u,(x1, z2)

AV <1Vu,]> = —k'2un.
€n

Question: What is the behavior of u,, in the limit n — 07
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Effective system
Perfect transmission through sub-wavelength structures Mathematical result
Transmission properties

h=1
1

2m omn

The domain 2: Maxwell equations are solved
Rectangle R: The original shape of the metal
Union of small rectangles X,;: The metal part after cutting holes

E—; for v € 3,
en(x) =47

1 for x ¢ 3,

Note: |e,| is huge in the metal part!
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Effective system
Perfect transmission through sub-wavelength structures Mathematical result
Transmission properties

With a, = 1/, (order n? in the metal) we must study

V- (ayVuy,) +k*u, = 0.

Outside the metal: a,, =1 — no oscillations — V,u =0
In the metal: a, = n?c; ' — V, - (,'Vyu) + k*u=0

With aperture a € (0,1) and metal thickness 2y =1 —
Define ¥ : R — C as the continuous, 1-periodic solution of

02V (z) = —k?c,¥(z) for z € (—v,7) (metal)
U(z) =1 for z € [-1/2,1/2]\ (=7v,7) (void)
¥ is given by
cosh(koz
U(z) = ot for |zl <
1 fory < |z| <1/2
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Perfect transmission through sub-wavelength structures

Effective system
Mathematical result
Transmission properties

We expect (in the rectangle R):

up ~ Uz, 22)¥(21/n)
In particular, in the single slit: uy = U(zg)

Here: &, < 0 real

\ vy
Equation in the single slit is (for some 7 € C)

82
o _ —k2 2
6373(] U

Qualitative Argument: The second derivative 92 u,, in the slit is
proportional to the values at the metal interfaces.

Solutions U(xs) are cos(tkxs) and sin(tkxs)

For height A > 0 in resonance with 7: Upper and lower boundary
coupled
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Effective system
Perfect transmission through sub-wavelength structures Mathematical result
Transmission properties

Original system: with a, = 1/¢,
V- (ay,Vu,) + k*u, = 0 inQ
Limit system: (loosely stated)

V- (aetVU) + KpegU = 0 inQ

e : R?2 = R2%2 and peg : R?2 — C are effective coefficients
1 0 2
aot () 1= 0 1 and  pegr(z) =1 for z e R°\ R

e () 1= (8 2) and  pe(z) =0 for x € R

a > 0: aperture volume = relative slit width

1/2 2 sinh(kovy)
2)dz = ————= C.
fi= /1/2 T ko cosh(kowy) tac
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Effective system
Perfect transmission through sub-wavelength structures Mathematical result
Transmission properties

Assume 3 # 0, €, # 0, ay, = 5;1 (small in the metal). Consider
V-jy= —k:2u7,, Jn = anVuy, ,
with limits u,, — u and j,, — j in L%(Q) for n — 0. Set

Ju(z) forz e Q\ R
V@) = B~ tu(x) forxeR

There holds 9,,U € L2 () and

loc

(0,,U,0,,U) in Q\ R
0, 8., U) inR

and
V-j=—-kuinQ
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Effective system
Perfect transmission through sub-wavelength structures Mathematical result
Transmission properties

Two-scale convergence: u,, — ug(x1,x2,y1) with (u, — u)

~Ju(x) forz ¢ R
uo(x,y){ﬂ Lu(z) U (yp) forr e R

Two-scale convergence: j, — jo(z,y) with (j, — j)

jo(x,y)z{j(x) forx € R

Ozfljg(x) €9 1{\y1\>’y} forz € R

The distributional derivatives of U satisfies 0,,U € L?(Q2).
Furthermore

j(z) = {(axlU(w),ar2U(x)) fors & R
(0, @8y, U(x)) for z € R

To show this relation: Consider only the void!
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Effective system
Perfect transmission through sub-wavelength structures Mathematical result
Transmission properties

Ansatz (R € C for reflection, T € C for transmission):

eik(sin(@)xl —cos(0)z2) + Reik(sin(@)zlJrcos(O)xg)

for zo > 0,
U(x1,22) = { (A cos(Tkry) + Ag sin(tkay)) etksin@)z for 0 > xg > —I
Teik(sin(é))w]—cos(@)(w2+fz)) for —h > Zs.
7 := /B/a reflects the equation 02, U = —k*72U in the structure

At the (horizontal)
w0 interfaces:

continuity of U

x=-h

continuity of j - es
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Effective system
Perfect transmission through sub-wavelength structures Mathematical result
Transmission properties

A calculation with the transfer matrix provides for T € C

1| ar cos(6)] . !
T= s(Tkh) — = kh
<COS(T ) 5 |:COS(9) + or ]sm(T )>
Physical values taken from Qing and Lalanne in non-dimensional form
(h=1):
n="7/6 | a=1/7 ~=3/7
A=15/6 | k=2r/A=~251 | ¢, = (0.12 + 3.7i)?
Explicit formulas for ::\ .
8= B(o, k,a) 1 | il |
™ =1(8,0) : 1 |
T=T(rk) N

Left: T = T'(k) for normal incidence, § = 0.
Right: T'= T'(¢) for wave-number k& = 0.8.
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Effective system
Perfect transmission through sub-wavelength structures Mathematical result
Transmission properties

We analyze: metal with large permittivity (n~2) and small holes (n)
Effective system is Maxwell-type, permittivity in x1-direction is +00

Natural field is U, not u (field outside the metal).
The field U satisfies the continuity condition!

Effective equations show the astonishing transmission T ~ 1
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Setting of the problem
Result
Negative index Materials Comments on the proof

Lamacz, A. and Schweizer, B., SIAM J. Math. Anal. 2013 (Re < 0)

Bouchitté, G. and Schweizer, B., SIAM J. Mult. Mod. 2010

Ty = U-‘f'll. +37)
r

A negative index material in experiments ... and in mathematics

(H,, E,) solves the Maxwell system with a

(Al > curl B, = iwH,
radiation condition at oo.

curl H,, = —iwe, I,
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Setting of the problem
Result
Negative index Materials Comments on the proof

“Many rings with thin slits”

|
260
f
2pm
€
€
€3

. . Th t 3x:
The material parameter is € parameter 1y appears
thin rings / many rings
e .
&y = T+ige in the rings high conductivity
1 else
very thin slit
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Setting of the problem
Result
Negative index Materials Comments on the proof

The aim is to replace the complex structure of many split rings with
high conductivity by a homogeneous Meta-material.

The resulting equations are of the form

curl £ = iwpegH

curl H = —iwegF

For appropriate parameters holds Re(pes) < 0.

Meta-Materials for light: Homogenization of Maxwell equations



Setting of the problem
Result
Negative index Materials Comments on the proof

Let &, be given with e, = 14 i in the rings.
Let (H,, E,) solve the Maxwell system with a cwrl By = iwH,
radiation condition at oo. curl H, = —iwe, E,

Theorem (Bouchitté — S. 2010, Lamacz — S. 2013)

Let (H,,E,) — (H,E) in L2, (R®) forn — 0. Then, for matrices My

and N, the limit functions solve
curl £ = wH
curl (MAH) = —iwNE.
There holds M = Mg + Aw, K)moes ® ez in Q, with

Mw, k) = —eopow? D3(w, k)

a(mp)~t + eopow? Do(w, k) — ik~1

Interpretation: The physical field is H = My H such that H = p*fH
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Setting of the problem
Result
Negative index Materials

Comments on the proof

Thin rings:

curl B, = iwH,
curl H, = —iwe, F
v=01° Sh f H77 —
ape of H:
Y=S8lcy P
dim(¥) =1 curl H = J

Shape of J:

Jn =gy —J
suppJ C X
divJ =0

= J=jtH'|%.

This determines the non-trivial part of the magnetic field.
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Setting of the problem
Result
Negative index Materials Comments on the proof

curl B, = iwH,
curl H,, = —iwe, B,
Two-scale convergence: H,(z) — Ho(z,y) and E,(z) = Eo(z,y) in
the sense of two-scale convergence (L? or measures)
In the single periodicity cell Y = [0,1]? the solution
looks like
Hy(z) ~ Ho(z,y),  Ey(x) ~ Eo(,y),
where y € Y is the local position within the cell.

The limits Hy(x,.) and Ey(z,.) solve the Maxwell equations, for example

divy Ho(z,y) =0in Y, curl, Ey(z,y) =0inY,
curly, Ho(z,y) =0in Y\ X.
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Setting of the problem
Result
Negative index Materials Comments on the proof

curl B, = iwH,

curl H,, = —iwe, E,
We additionally consider the field

Iy = nenEy = Jo(z,y).

Then
divJ, = 0 implies div, Jo(z,.) =0in Y
E,, bounded implies Jy(z,.) =0in Y \ X
n curl H, = —iwJ, implies curl, Hy(z,.) = —iwJy(z,.) in Y.
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Setting of the problem
Result
Negative index Materials Comments on the proof

Introduce current J,, := ne, I, and derive estimates

Consider two-scale limits Hy, Ey, Jo and derive cell problems
Difficulty: Slit vanishes

Analyze cell problems.
Difficulty: construction of the special solution H® “pointing through
the ring”

Write the two-scale limit as
3
Ho(z,y) = j(z)H(y) + Y He(x)H*(y),
k=1

and determine j from the slit

Conclude the macroscopic equation

Result of 4: j(x) = A Hs(x) with
_ 2
B eopow?® D3(w, K)
Mw, k) = - .
a(mp)~t 4+ eguow? Do(w, k) — i1
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_ =
Result

Negative index Materials Comments on the proof
Step 3: 3D-cell problem without slit

We must study the 3D cell problem:
The H-problem

curly H +iwegJ =01inY,
divy H=0inY,
H is periodic in Y,

E is coupled to the J-problem
/Lcl curly J + rwpoH =0in X,
Y the torus, divy, J =0inY, )
Y =(0,1)3, J=0inY\ZX.

Lemma (Bouchitté — S., 2010)

The solution space to the above problem is four-dimensional.
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Setting of the problem
Result
Negative index Materials Comments on the proof

Space for solutions:
Xo:={ue L. (Y):divue L*(Y),curlu=0on Y \ £}

Bilinear form:

bo (u, v) ::/ divu div@fikg/ u v
Y Y

Regarding normalization:
On the 3D-torus X C R? exists a vector field y, such that with

curly, =0, AP:x,=VO.

Normalize special solution u with

/U~6k:0fork:1,2,37 and /U'Xazl-
Y b
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Setting of the problem
Result
Negative index Materials

Comments on the proof

The flux J, is almost constant — across the slit!
(despite £, = 1 4.5 in the ring)

11 - . .
—= =707 in the slit
E‘77 ~ wn

71 . . - .
—njoT  inside the material

! T nodt eortacct”

/ E7,~T=/ 63~cur1E,,=iw/ e3 - Hy
closed ring disc disc

. and in the limit n — 0:

o — z?) jo(x) = iw (D3Hs(x) — Dojo(x))

This provides jo(x) = AM(w)Hs(x).
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Setting of the problem
Result
Negative index Materials Comments on the proof

Use test-functions ® from ®(z,y) = ¢ (2)O(y) with curl, ® =0in Y,
© =0 on conv X. Then, for n — 0,

/' curl H,, - ¢ = / (—iwenEy) - © = (—iwE(z),¥(x))
R3 R3
.. and the left hand side equals
Hy-cwl® = | Hy(z)O(x/n) A Vip(z)de
R3 R3
o [ @) N Ha(a) B(0)} ©0) A Vo) dyda
r3 Jy
= / [MH ()] A Vip(z) do = <cur1 [Z\%H},z/)(a:)>
RB

This provides curl [M H| = —iwE(z).
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Setting of the problem
Result
Negative index Materials Comments on the proof

curl H = —iwegF

@ curl E = iwpegH

split ring geometry with highly conducting rings
3D-scattering problem, Maxwell equations

formulas for peg and e in terms of conductivity and geometric
quantities

mathematical proofs for the homogenization result

Calculations show: peg can be negative (despite g = 1)

Thank you!
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Permittivity with 02 = —¢,
€
— forx € ¥
en(x) = n? !
1 for x ¢ 3,
Use a, = 1/¢,
2 sinh(kovy)
b= ko cosh(kowy) e
T=4/f/a
i [ ar cos(0)] . !
= h)— = kh
T <cos(7k: ) 5 |:COS(9) + or ] sin(7 ))
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