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Is 7
6 a small number?
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Shortest Paths

Fermat’s principle of
the fastest path:

Light finds the
fastest way to reach
the destination,

sin Θ1

sin Θ2
=
v1

v2
=
n2

n1

Wave equation

Huygens’ principle
of superpositions

Wave equation

∂2
t u = ∆u

Numerical solution
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Maxwell’s Equations

Variables:

I Electric field E

I Magnetic field H

Simplification:

I Time harmonic solutions

H,E ∼ e−iωt

Remarks:

I Vacuum: µ = ε = 1

I Material parameter

Im ε↔ conductivity

Maxwell’s Equations

curl E = iωµH

curl H = −iωεE
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Negative index of refraction

Veselago (1968)

Properties of materials with negative

index, Maxwell equations

If n1 > 0 and n2 < 0, then light
should be refracted “backward”.

Solutions for positive and negative index

But ... in Maxwell’s Equations

I Re ε < 0 possible

I µ is always 1

I Reµε < 0: light can not travel in
the medium

Negative Index: ε and µ negative!

Computer grafics: Negative refraction
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Experimental construction of Meta-Materials

I Pendry et al. (∼ 2000) suggest a split ring construction

A negative index meta-material

I Experiments confirm the negative index
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Transmission through sub-wavelength holes
Observation: Light hits a metal layer with holes. Even though the holes
have sub-wavelength dimensions, the light can exit at the other side.

I Ebbesen, T. W. and Lezec, H. J. and Ghaemi, H. F. and Thio, T. and Wolff, P. A. Extraordinary optical
transmission through sub-wavelength hole arrays, Letters to Nature 391, 1998.

I Porto, J. A. and Garcia-Vidal, F. J. and Pendry, J. B. Transmission Resonances on Metallic Gratings with
Very Narrow Slits, Phys. Rev. Lett. 14, 1999.

I Mary, A. and Rodrigo, Sergio G. and Martin-Moreno, L. and Garcia-Vidal, F. J., Holey metal films: From
extraordinary transmission to negative-index behavior, Physical Review B 80, 2009.

I Cao, Qing and Lalanne, Philippe Negative Role of Surface Plasmons in the Transmission of Metallic
Gratings with Very Narrow Slits, Phys. Rev. Lett. 5, 2002.

I P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel Perturbative approach for surface
plasmon effects on flat interfaces periodically corrugated by subwavelength apertures Physical Review B 68,
2003
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Surface plasmons: A mathematicians view

We consider the Helmholtz equation ∇ · (a(x)∇u(x)) = −k2u(x) or even

∇ · (a(x)∇u(x)) = 0

Let a be +1 for x1 > 0 and −1 for x1 < 0, ω > 0 arbitrary

x1 < 0 x1 > 0
a = −1 a = +1

u(x1, x2) = exp(ωx1) sin(ωx2) u(x1, x2) = exp(−ωx1) sin(ωx2)

Then u is harmonic
and continuous

and a(x)∂x1
u(x) is continuous

Similarly, solutions of the Helmholtz equation can be obtained

−→ we found a wave solution that localizes at the interface
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Time-harmonic Maxwell Equations

Later, η > 0 stands for the size of the holes ...

curl Eη = iωµ0Hη

curl Hη = −iωεηε0Eη

Wave number k and wavelength λ = 2π
k . Further assumptions:

I invariance in direction x3

I magnetic transverse polarization H = (0, 0, u)

2D Helmholtz equation for Hη = (0, 0, uη) with uη = uη(x1, x2)

∇ ·
(

1

εη
∇uη

)
= −k2uη.

Question: What is the behavior of uη in the limit η → 0?
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Geometry and permittivity
x

x

Ση

Ω

2

1

2γη αη

h=1

The domain Ω: Maxwell equations are solved
Rectangle R: The original shape of the metal
Union of small rectangles Ση: The metal part after cutting holes

εη(x) =


εr
η2

for x ∈ Ση

1 for x 6∈ Ση

Note: |εη| is huge in the metal part!
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First thoughts on the system
With aη = 1/εη (order η2 in the metal) we must study

∇ · (aη∇uη) + k2 uη = 0 .

1. Outside the metal: aη ≡ 1 −→ no oscillations −→ ∇yu = 0

2. In the metal: aη = η2ε−1
r −→ ∇y · (ε−1

r ∇yu) + k2 u = 0

With aperture α ∈ (0, 1) and metal thickness 2γ = 1− α:
Define Ψ : R→ C as the continuous, 1-periodic solution of

∂2
zΨ(z) = −k2εrΨ(z) for z ∈ (−γ, γ) (metal)

Ψ(z) = 1 for z ∈ [−1/2, 1/2] \ (−γ, γ) (void)

Ψ is given by

Ψ(z) =

{
cosh(kσz)
cosh(kσγ) for |z| ≤ γ
1 for γ < |z| ≤ 1/2
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Qualitative behavior of solutions
We expect (in the rectangle R): uη ≈ U(x1, x2)Ψ(x1/η)
In particular, in the single slit: uη ≈ U(x2)

u

y

η

1

Here: εr < 0 real

Equation in the single slit is (for some τ ∈ C)

∂2

∂x2
2

U = −k2τ2U

Qualitative Argument: The second derivative ∂2
x1
uη in the slit is

proportional to the values at the metal interfaces.

I Solutions U(x2) are cos(τkx2) and sin(τkx2)

I For height h > 0 in resonance with τ : Upper and lower boundary
coupled
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The effective system
Original system: with aη = 1/εη

∇ · (aη∇uη) + k2 uη = 0 in Ω

Limit system: (loosely stated)

∇ · (aeff∇U) + k2µeff U = 0 in Ω

aeff : R2 → R2×2 and µeff : R2 → C are effective coefficients

aeff(x) :=

(
1 0
0 1

)
and µeff(x) := 1 for x ∈ R2 \R

aeff(x) :=

(
0 0
0 α

)
and µeff(x) := β for x ∈ R

α > 0: aperture volume = relative slit width

β :=

∫ 1/2

−1/2

Ψ(z) dz =
2

kσ

sinh(kσγ)

cosh(kσγ)
+ α ∈ C .
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Theorem (Bouchitté and S., 2012)
Assume β 6= 0, εr 6= 0, aη := ε−1

η (small in the metal). Consider

∇ · jη = −k2uη , jη = aη∇uη ,

with limits uη ⇀ u and jη ⇀ j in L2(Ω) for η → 0. Set

U(x) :=

{
u(x) for x ∈ Ω \R
β−1u(x) for x ∈ R

There holds ∂x2U ∈ L2
loc(Ω) and

j =

{
(∂x1

U, ∂x2
U) in Ω \R

(0, α ∂x2U) in R

and
∇ · j = −k2 u in Ω
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Method of proof
1.) Two-scale convergence: uη → u0(x1, x2, y1) with (uη ⇀ u)

u0(x, y) =

{
u(x) for x 6∈ R
β−1u(x) Ψ(y1) for x ∈ R

2.) Two-scale convergence: jη → j0(x, y) with (jη ⇀ j)

j0(x, y) =

{
j(x) for x 6∈ R
α−1 j2(x) e2 1{|y1|>γ} for x ∈ R

3.) The distributional derivatives of U satisfies ∂x2
U ∈ L2(Ω).

Furthermore

j(x) =

{
(∂x1

U(x), ∂x2
U(x)) for x 6∈ R

(0, α ∂x2
U(x)) for x ∈ R

To show this relation: Consider only the void!
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Transmission properties
Ansatz (R ∈ C for reflection, T ∈ C for transmission):

U(x1, x2) =


eik(sin(θ)x1−cos(θ)x2) +Reik(sin(θ)x1+cos(θ)x2) for x2 > 0,

(A1 cos(τkx2) +A2 sin(τkx2)) eik(sin(θ)x1 for 0 > x2 > −h,
Teik(sin(θ)x1−cos(θ)(x2+h)) for − h > x2.

τ :=
√
β/α reflects the equation ∂2

x2
U = −k2τ2U in the structure

R

T

1

θ

x =−h

2
x =0

2

At the (horizontal)
interfaces:

I continuity of U

I continuity of j · e2
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Results on transmission properties
A calculation with the transfer matrix provides for T ∈ C

T =

(
cos(τkh)− i

2

[
ατ

cos(θ)
+

cos(θ)

ατ

]
sin(τkh)

)−1

Physical values taken from Qing and Lalanne in non-dimensional form
(h = 1):

η = 7/6 α = 1/7 γ = 3/7
λ = 15/6 k = 2π/λ ≈ 2.51 εη = (0.12 + 3.7i)2

Explicit formulas for
β = β(σ, k, α)
τ = τ(β, α)
T = T (τ, k)
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Left: T = T (k) for normal incidence, θ = 0.

Right: T = T (θ) for wave-number k = 0.8.
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Conclusions on transmission

I We analyze: metal with large permittivity (η−2) and small holes (η)

I Effective system is Maxwell-type, permittivity in x1-direction is +∞
I Natural field is U , not u (field outside the metal).

The field U satisfies the continuity condition!

I Effective equations show the astonishing transmission T ≈ 1
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Negative index Meta-Materials
(Reµ < 0)I Lamacz, A. and Schweizer, B., SIAM J. Math. Anal. 2013

I Bouchitté, G. and Schweizer, B., SIAM J. Mult. Mod. 2010

A negative index material in experiments ... and in mathematics

(Hη, Eη) solves the Maxwell system with a
radiation condition at ∞.

curl Eη = iωHη

curl Hη = −iωεηEη
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Microscopic geometry
“Many rings with thin slits”

e

e

e

1

3

2

2βη

2ρη

2αη3

The material parameter is

εη =

{
1 + i κη2 in the rings

1 else

The parameter η appears 3×:

1. thin rings / many rings

2. high conductivity

3. very thin slit
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Homogenization
The aim is to replace the complex structure of many split rings with
high conductivity by a homogeneous Meta-material.

The resulting equations are of the form

curl E = iωµeffH

curl H = −iωεeffE

For appropriate parameters holds Re(µeff) < 0.
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Main result
Let εη be given with εη = 1 + i κη2 in the rings.

Let (Hη, Eη) solve the Maxwell system with a
radiation condition at ∞.

curl Eη = iωHη

curl Hη = −iωεηEη

Theorem (Bouchitté – S. 2010, Lamacz – S. 2013)

Let (Hη, Eη) ⇀ (H,E) in L2
loc(R3) for η → 0. Then, for matrices M̂λ

and N̂ , the limit functions solve

curl E = iωH

curl (M̂λH) = −iωN̂E.

There holds M̂λ =M0 + λ(ω, κ)m0e3 ⊗ e3 in Ω, with

λ(ω, κ) =
−ε0µ0ω

2D3(ω, κ)

α(πρ)−1 + ε0µ0ω2D0(ω, κ) − iκ−1
.

Interpretation: The physical field is Ĥ = M̂λH such that H = µeffĤ
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Formally, 1D-rings

curl Eη = iωHη

curl Hη = −iωεηEη
Thin rings:

Y = (0, 1)3

Σ = S1 ⊂ Y
dim(Σ) = 1

Shape of J :

jη := ηεηEη ⇀ J

supp J ⊂ Σ

div J = 0

⇒ J = jτH1bΣ.

Shape of H:

curlH = J

This determines the non-trivial part of the magnetic field.
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Homogenization procedure

curl Eη = iωHη

curl Hη = −iωεηEη

Two-scale convergence: Hη(x)→ H0(x, y) and Eη(x)→ E0(x, y) in
the sense of two-scale convergence (L2 or measures)
Loose definition: In the single periodicity cell Y = [0, 1]3 the solution
looks like

Hη(x) ∼ H0(x, y), Eη(x) ∼ E0(x, y),

where y ∈ Y is the local position within the cell.

The limits H0(x, .) and E0(x, .) solve the Maxwell equations, for example

divyH0(x, y) = 0 in Y, curly E0(x, y) = 0 in Y,

curlyH0(x, y) = 0 in Y \ Σ.
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The current J

curl Eη = iωHη

curl Hη = −iωεηEη

We additionally consider the field

Jη := ηεηEη → J0(x, y).

Then

divJη = 0 implies divy J0(x, .) = 0 in Y

Eη bounded implies J0(x, .) = 0 in Y \ Σ

η curl Hη = −iωJη implies curlyH0(x, .) = −iωJ0(x, .) in Y.
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Outline of the homogenization proof

1. Introduce current Jη := ηεηEη and derive estimates

2. Consider two-scale limits H0, E0, J0 and derive cell problems
Difficulty: Slit vanishes

3. Analyze cell problems.
Difficulty: construction of the special solution H0 “pointing through
the ring”

4. Write the two-scale limit as

H0(x, y) = j(x)H0(y) +

3∑
k=1

Hk(x)Hk(y),

and determine j from the slit

5. Conclude the macroscopic equation

Result of 4: j(x) = λH3(x) with

λ(ω, κ) =
−ε0µ0ω

2D3(ω, κ)

α(πρ)−1 + ε0µ0ω2D0(ω, κ) − iκ−1
.
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Step 3: 3D-cell problem without slit

We must study the 3D cell problem:

e

e

e

χ

χ

χ

χ

2

1

3

a

a

b

b

n

Σ the torus,
Y = (0, 1)3,

The H-problem

curly H + iωε0J = 0 in Y,

divy H = 0 in Y,

H is periodic in Y,

is coupled to the J-problem

curly J + κωµ0H = 0 in Σ,

divy J = 0 in Y,

J = 0 in Y \ Σ̄.

Lemma (Bouchitté – S., 2010)

The solution space to the above problem is four-dimensional.
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Idea for the Lemma
Space for solutions:

X0 :=
{
u ∈ L2

per(Y ) : div u ∈ L2(Y ), curlu = 0 on Y \ Σ
}

Bilinear form:

b0(u, v) :=

∫
Y

div u div v̄ − ik2
0

∫
Y

u v̄

Regarding normalization:
On the 3D-torus Σ ⊂ R3 exists a vector field χa such that with

curlχa = 0, 6 ∃Φ : χa = ∇Φ.

Normalize special solution u with∫
Y

u · ek = 0 for k = 1, 2, 3, and

∫
Σ

u · χa = 1.
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Step 4: Slit analysis

The flux Jη is almost constant — across the slit!
(despite εη = 1 + i κη2 in the ring)

Eη ∼

{
1
iω

1
η j0τ in the slit

−1
κω ηj0τ inside the material

∫
closed ring

Eη · τ =

∫
disc

e3 · curlEη = iω

∫
disc

e3 ·Hη

... and in the limit η → 0:

−2i

ω

(
α− iρπ

κ

)
j0(x) = iω (D3H3(x)−D0j0(x))

This provides j0(x) = λ(ω)H3(x).
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Step 5: Macroscopic equation

Use test-functions Φ from Φ(x, y) = ψ(x)Θ(y) with curly Θ = 0 in Y ,
Θ ≡ 0 on conv Σ. Then, for η → 0,∫

R3

curlHη · Φ =

∫
R3

(−iωεηEη) · Φ→ 〈−iωE(x), ψ(x)〉

... and the left hand side equals∫
R3

Hη · curl Φ =

∫
R3

Hη(x)Θ(x/η) ∧∇ψ(x) dx

→
∫
R3

∫
Y

{
H(x) + λ(ω)H3(x)H0(y)

}
Θ(y) ∧∇ψ(x) dy dx

=

∫
R3

[M̂H(x)] ∧∇ψ(x) dx =
〈

curl [M̂H], ψ(x)
〉

This provides curl [M̂H] = −iωE(x).
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Conclusions on negative index materials

curl E = iωµeffH

curl H = −iωεeffE

I split ring geometry with highly conducting rings

I 3D-scattering problem, Maxwell equations

I formulas for µeff and εeff in terms of conductivity and geometric
quantities

I mathematical proofs for the homogenization result

I Calculations show: µeff can be negative (despite µ0 ≡ 1)

Thank you!
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All formulas (perfect transmission):

Permittivity with σ2 = −εr

εη(x) =


εr
η2

for x ∈ Ση

1 for x 6∈ Ση

Use aη = 1/εη

β =
2

kσ

sinh(kσγ)

cosh(kσγ)
+ α

τ =
√
β/α

T =

(
cos(τkh)− i

2

[
ατ

cos(θ)
+

cos(θ)

ατ

]
sin(τkh)

)−1
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