Effective Helmholtz equation for domains with a perforation along an interface

Ben Schweizer

technische universität

ICIAM 2019, July 16, Valencia

Helmholtz equation

Sound is described by the wave equation $\partial_{t}^{2} p=\Delta p$. The time-harmonic ansatz $p=p(x) e^{i \omega t}$ leads to the

Helmholtz equation

$$
-\Delta p=\omega^{2} p+f \quad \text { in } \Omega
$$

Here: $f \in L^{2}(\Omega)$ a prescribed source

A domain $\Omega \subset \mathbb{R}^{d}$ for $d=2$

Graphic taken from: Acoustics Today

Helmholtz equation

$$
\begin{equation*}
-\Delta p^{\varepsilon}=\omega^{2} p^{\varepsilon}+f \quad \text { in } \Omega_{\varepsilon} \tag{1}
\end{equation*}
$$

Dirichlet condition on $\partial \Omega$

Always: Homogeneous
Neumann boundary condition on $\partial \Omega_{\varepsilon} \backslash \partial \Omega$

What is the effect of a perforation along a plane?

Notation

Inclusions: Index $k \in \mathbb{Z}^{d-1}$. The single inclusion is

$$
\Sigma_{k}^{\varepsilon}:=\varepsilon(\Sigma+(k, 0)) \text { for } k \in \mathbb{Z}^{d-1}
$$

Number of inclusions $\sim \varepsilon^{-(d-1)}$
Perforated domain:

$$
\Sigma_{\varepsilon}:=\bigcup_{k \in I_{\varepsilon}} \Sigma_{k}^{\varepsilon} \quad \Omega_{\varepsilon}:=\Omega \backslash \bar{\Sigma}_{\varepsilon}
$$

A surprising observation

Helmholtz equation $-\Delta p^{\varepsilon}=\omega^{2} p^{\varepsilon}+f$, assume $\left\|p^{\varepsilon}\right\|_{L^{2}} \leq C$
Extension: $\mathcal{P}_{\varepsilon}: L^{2}\left(\Omega_{\varepsilon}\right) \rightarrow L^{2}(\Omega)$ maps a function to its trivial extension

- Multiply equation with p^{ε}, Poincaré $\longrightarrow\left\|p^{\varepsilon}\right\|_{H^{1}\left(\Omega_{\varepsilon}\right)} \leq C$
- $\mathcal{P}_{\varepsilon} p^{\varepsilon} \rightharpoonup p$ and $\mathcal{P}_{\varepsilon}\left(\nabla p^{\varepsilon}\right) \rightharpoonup g$ in $L^{2}(\Omega), g=\nabla p \in \Omega \backslash \Gamma_{0}$
- Poincaré to compare p across layer $\longrightarrow \quad[p]=0, g=\nabla p$ in Ω
- Limit in equation: $\int_{\Omega} \nabla p \cdot \nabla \varphi=\omega^{2} \int_{\Omega} p \varphi+\int_{\Omega} f \varphi$

Result:

The limit function p is the $H^{1}(\Omega)$-solution of

$$
\begin{equation*}
-\Delta p=\omega^{2} p+f \quad \text { in } \Omega \tag{2}
\end{equation*}
$$

\longrightarrow The perforation has no effect! (at order 1)

For a priori bound in L^{2} we assume:
ω^{2} is not a Dirichlet eigenvalue of $-\Delta$ on Ω :

$$
\omega^{2} \notin \sigma(-\Delta)
$$

The leading order limit

Theorem (Trivial limit and rate of convergence, DHS 2017)

Let p^{ε} be solutions to (1) and let the dimension be $d=3$ With the unique weak solution $p \in H_{0}^{1}(\Omega)$ of (2) holds

$$
\mathcal{P}_{\varepsilon} p^{\varepsilon} \rightarrow p \quad \text { and } \quad \mathcal{P}_{\varepsilon} \nabla p^{\varepsilon} \rightharpoonup \nabla p \quad \text { in } L^{2}(\Omega)
$$

Let f have the regularity $H^{1} \cap C^{\alpha}, \alpha>0$, and let $\partial \Omega$ be of class C^{3} For a constant $C=C(f)$ holds

$$
\begin{equation*}
\left\|p-\mathcal{P}_{\varepsilon} p^{\varepsilon}\right\|_{L^{2}(\Omega)}+\left\|\nabla p-\mathcal{P}_{\varepsilon} \nabla p^{\varepsilon}\right\|_{L^{2}(\Omega)} \leq C \varepsilon^{1 / 2} \tag{3}
\end{equation*}
$$

C. Dörlemann, M. Heida, and B. Schweizer. Transmission conditions for the Helmholtz-equation in perforated domains. Vietnam J. Math., 45(1-2):241-253, 2017

The first order limit

p^{ε} : solution of (1) on $\Omega_{\varepsilon} \quad p$: solution of (2) on Ω

Define the corrector

$$
\begin{equation*}
v^{\varepsilon}:=\frac{p^{\varepsilon}-p}{\varepsilon} \tag{4}
\end{equation*}
$$

Assume $v^{\varepsilon} \rightarrow v$. What are the equations for v ?

Orders of magnitude

- ∇p is smooth, order $O(1)$ around inclusion
- $n \cdot \nabla v^{\varepsilon}=-\frac{1}{\varepsilon} n \cdot \nabla p$ of order $O\left(\varepsilon^{-1}\right)$
- v^{ε} has variations $O(1)$

Functions spaces

$$
\begin{aligned}
& \text { bad: }\left\|\nabla v^{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \rightarrow \infty \text { expected } \\
& \text { good: }\left\|\nabla v^{\varepsilon}\right\|_{L^{1}\left(\Omega_{\varepsilon}\right)} \leq C \text { possible }
\end{aligned}
$$

p and p^{ε} near an obstacle

Let's follow a classical advice ...

divide et impera!

Assumption

For some $C>0$, independent of ε :

$$
\begin{equation*}
\left\|v^{\varepsilon}\right\|_{W^{1,1}\left(\Omega_{\varepsilon}\right)} \leq C \tag{5}
\end{equation*}
$$

Two questions

(1) What are the equations for v ?
(2) Why should v^{ε} satisfy (5)?

Assumption (5) implies for $q>1$ and $v \in L^{1}(\Omega)$:

- $\mathcal{P}_{\varepsilon} v^{\varepsilon} \xrightarrow{*} v d \mathcal{L}^{d}$ weak-* as measures
- $\mathcal{P}_{\varepsilon} \nabla v^{\varepsilon} \stackrel{*}{\rightharpoonup} \nabla v+\mu$ for some measure μ with $\operatorname{supp}(\mu) \subset \Gamma_{0}$
- $v \in L_{\mathrm{loc}}^{q}(\Omega)$ and $\mathcal{P}_{\varepsilon} v^{\varepsilon} \rightarrow v$ in $L_{\mathrm{loc}}^{1}(\Omega)$
- $v \in W^{1,1}\left(\Omega \backslash \Gamma_{0}\right)$

Orders of magnitude near an obstacle

The main result

Theorem (Effective system for the corrector, S. 2018)
p^{ε} and p as above (solutions to Helmholtz), corrector v^{ε} given by

$$
v^{\varepsilon}=\frac{p^{\varepsilon}-p}{\varepsilon}
$$

Assume the $\varepsilon^{1 / 2}-L^{2}$-bound (3), the $W^{1,1}$-bound (5), and $\mathcal{P}_{\varepsilon} v^{\varepsilon} \rightarrow v$ Then $v \in W^{1,1}\left(\Omega \backslash \Gamma_{0}\right)$ is the unique solution of

$$
\begin{align*}
-\Delta v & =\omega^{2} v & & \text { in } \Omega \backslash \Gamma_{0} \\
{[v] } & =J \cdot \nabla p & & \text { on } \Gamma_{0} \tag{6}\\
{\left[\partial_{\nu} v\right] } & =\nabla \cdot(G \nabla p) & & \text { on } \Gamma_{0}
\end{align*}
$$

The matrices $G \in R^{d \times d}$ and $J \in \mathbb{R}^{d}$ are given by cell problems
Result: weak coupling! One solves first system for p. The corrector is given by a Helmholtz equation that involves $\left.p\right|_{\Gamma_{0}}$ and $\left.\nabla p\right|_{\Gamma_{0}}$ as data
B. Delourme, H. Haddar, and P. Joly. Approximate models for wave propagation across thin periodic interfaces. J. Math. Pures Appl. (9), 98(1):28-71, 2012.

Cell problems

$$
Y:=\left(-\frac{1}{2}, \frac{1}{2}\right)_{\text {per }}^{d-1} \times \mathbb{R} \quad Z:=Y \backslash \Sigma
$$

The Lipschitz domain Σ (obstacle) is compactly contained
Definition: Cell problem
Given $\xi \in \mathbb{R}^{d}$, seek $w \in H_{\mathrm{loc}}^{1}(Z)$ such that

$$
\begin{align*}
-\Delta w & =0 & & \text { in } Z \\
\partial_{n} w & =n \cdot \xi & & \text { on } \partial \Sigma \tag{7}
\end{align*}
$$

$n: \partial \Sigma \rightarrow \mathbb{R}^{d}$ is the exterior normal of Z
Lemma: Existence and uniqueness for cell problem
For $\xi \in \mathbb{R}^{d}$ there exists a (unique up to constants) solution w,

$$
\begin{aligned}
w \in \dot{H}(Z) & :=\left\{w \in H_{\mathrm{loc}}^{1}(Z) \mid \nabla w \in L^{2}(Z)\right\} \\
\|w\|_{\dot{H}}^{2} & :=\int_{Z \cap\left\{\left|y_{d}\right|<1\right\}}|w|^{2}+\int_{Z}|\nabla w|^{2}
\end{aligned}
$$

Effective coefficients

For arbitrary $\xi \in \mathbb{R}^{d}$ and $w=w_{\xi}$
"Gradient" $: G \in \mathbb{R}^{d \times d}$
Recall:
$\partial_{n} w=n \cdot \xi$ on $\partial \Sigma$
$[v]=J \cdot \nabla p$
$\left[\partial_{\nu} v\right]=\nabla \cdot(G \nabla p)$

$$
G \xi:=\int_{Z} \nabla w \in \mathbb{R}^{d}
$$

"Jump": $J \in \mathbb{R}^{d}$

$$
J \cdot \xi:=-\lim _{\zeta \rightarrow \infty} \int_{\left\{y_{d}=\zeta\right\}} w+\lim _{\zeta \rightarrow-\infty} \int_{\left\{y_{d}=\zeta\right\}} w \in \mathbb{R}
$$

Lemma (Structural properties)

The matrix G and the vector J are well defined. They have the form

$$
G=\left(\begin{array}{cc}
G_{\tau} & J_{\tau} \\
0 & -|\Sigma|
\end{array}\right) \quad J=\binom{J_{\tau}}{\gamma}
$$

with $G_{\tau} \in \mathbb{R}^{(d-1) \times(d-1)}$ symmetric and positive definite, $J_{\tau} \in \mathbb{R}^{d-1}$, $\gamma \in \mathbb{R}$ with $\gamma>|\Sigma|$.

Idea of the proof: Elementary unfolding

Let $\varphi \in C_{c}^{\infty}(\Omega)$ be arbitrary. Consider $V_{\varphi}^{\varepsilon}: Z \rightarrow \mathbb{R}$,

$$
V_{\varphi}^{\varepsilon}(y):=\frac{1}{\left|I_{\varepsilon}\right|} \sum_{k \in I_{\varepsilon}} v^{\varepsilon}(\varepsilon(k+y)) \varphi(\varepsilon(k+y))
$$

Derive estimates for $V_{\varphi}^{\varepsilon}$ using $\left\|v^{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)}+\left\|\nabla v^{\varepsilon}\right\|_{L^{2}\left(\Omega_{\varepsilon}\right)} \leq C \varepsilon^{-1 / 2}$:

$$
\begin{aligned}
\int_{Z}\left|\nabla V_{\varphi}^{\varepsilon}\right|^{2} & \leq C \int_{Z} \varepsilon^{d-1} \sum_{k}\left|\varepsilon^{2} \nabla v^{\varepsilon}(\varepsilon(k+y))\right|^{2} d y \\
& \left.\leq C \int_{\Omega_{\varepsilon}} \varepsilon^{-d} \varepsilon^{d-1} \varepsilon^{2} \mid \nabla v^{\varepsilon}(x)\right)\left.\right|^{2} d x \leq C
\end{aligned}
$$

Conclude

$$
V_{\varphi, 0}^{\varepsilon} \rightharpoonup w \text { in } \dot{H}^{1}(Z)
$$

as $\varepsilon \rightarrow 0$. Here w is the cell-problem solution for

$$
\xi:=-\frac{1}{\left|\Gamma_{0}\right|} \int_{\Gamma_{0}} \nabla p \varphi \in \mathbb{R}^{d}
$$

Furthermore, there holds

$$
e_{j} \cdot \int_{\partial \Sigma_{\varepsilon}} n v^{\varepsilon} \varphi \rightarrow\left|\Gamma_{0}\right| e_{j} \cdot \int_{\partial \Sigma} n w
$$

Main proposition

Proposition (Equations for weak limits)

p^{ε}, p, and v^{ε} as above, v and μ the limits:

$$
\mathcal{P}_{\varepsilon} v^{\varepsilon} \xrightarrow{*} v d \mathcal{L}^{d} \quad \text { and } \quad \mathcal{P}_{\varepsilon} \nabla v^{\varepsilon} \stackrel{*}{\rightharpoonup} \nabla v+\mu
$$

Then μ is given by

$$
\begin{equation*}
\mu=-G \nabla p \mathcal{H}^{d-1}\left\lfloor_{\Gamma_{0}}\right. \tag{8}
\end{equation*}
$$

and v satisfies the system (6).
On the proof \mathbf{I}. An integration by parts for $j<d$:

$$
\int_{\Omega_{\varepsilon}} \partial_{j} v^{\varepsilon} \varphi+\int_{\Omega_{\varepsilon}} v^{\varepsilon} \partial_{j} \varphi=e_{j} \cdot \int_{\partial \Sigma_{\varepsilon}} n v^{\varepsilon} \varphi
$$

In the limit $\varepsilon \rightarrow 0$:

$$
\int_{\Omega} \partial_{j} v \varphi+\int_{\Omega} e_{j} \varphi \cdot d \mu+\int_{\Omega} v \partial_{j} \varphi=-\int_{\Gamma_{0}} e_{j} \cdot G \nabla p \varphi
$$

This shows

$$
\begin{equation*}
e_{j} \cdot \mu=-e_{j} \cdot G \nabla p \mathcal{H}^{d-1}\left\lfloor_{\Gamma_{0}}\right. \tag{9}
\end{equation*}
$$

On the proof II

On the proof II. Limits in the weak form of the equation

$$
\begin{aligned}
\int_{\Omega \backslash \Gamma_{0}} & \nabla v \cdot \nabla \varphi+\int_{\Omega} \nabla \varphi \cdot d \mu \longleftarrow \int_{\Omega_{\varepsilon}} \nabla v^{\varepsilon} \cdot \nabla \varphi \\
& =-\int_{\partial \Omega_{\varepsilon}} \frac{1}{\varepsilon} n \cdot \nabla p \varphi+\int_{\Omega_{\varepsilon}} \omega^{2} v^{\varepsilon} \varphi \\
& \rightarrow|\Sigma| \int_{\Gamma_{0}}\left(\partial_{\nu}^{2} p \varphi+\partial_{\nu} p \partial_{\nu} \varphi\right)+\int_{\Omega} \omega^{2} v \varphi
\end{aligned}
$$

$\varphi \in C_{c}^{\infty}(\Omega)$ that vanish on Γ_{0} and have $\partial_{\nu} \varphi$ arbitrary on Γ_{0} :

$$
e_{d} \cdot \mu=|\Sigma| \partial_{\nu} p \mathcal{H}^{d-1}\left\lfloor\Gamma_{0}\right.
$$

General $\varphi \in C_{c}^{\infty}(\Omega)$ yields the jump condition

$$
\left[\partial_{\nu} v\right]=\nabla \cdot G \nabla p
$$

The jump condition for values follows similarly

Proof of the $W^{1,1}$-bound

Can a function u^{ε} with $\partial_{n} u^{\varepsilon}=O\left(\varepsilon^{-1}\right)$ be bounded in $W^{1,1}$?

Proposition (Construction of $W^{1,1}$-bounded sequences)

$R:=(-1,1)^{d-1} \times(-h, h)$ a cuboid, $g \in C^{2}(\bar{R}) \cap H^{3}(R)$ prescribes boundary data
$\Sigma \subset Y$ satisfies a regularity property (solutions in L^{∞})
$R_{\varepsilon}:=R \backslash \Sigma_{\varepsilon}$ the perforated domains
Then there exists a sequence $u_{\varepsilon}: R_{\varepsilon} \rightarrow \mathbb{R}$ of class $H^{2}\left(R_{\varepsilon}\right)$ such that

$$
\begin{aligned}
& u_{\varepsilon} \in L^{2}\left(R_{\varepsilon}\right) \cap W^{1,1}\left(R_{\varepsilon}\right) \\
& \sigma_{\varepsilon}:=\left.\left(\partial_{n} u_{\varepsilon}-\frac{1}{\varepsilon} g \cdot n\right)\right|_{\partial \Sigma_{\varepsilon}} \in L^{\infty}\left(\partial \Sigma_{\varepsilon}\right) \\
& \rho_{\varepsilon}:=\Delta u_{\varepsilon} \in L^{\infty}\left(R_{\varepsilon}\right)
\end{aligned}
$$

are bounded in the indicated function spaces
Idea of proof: Write u_{ε} explicitly with second order cell solutions ψ,

$$
u_{\varepsilon}(x):=w_{j}(x / \varepsilon) g_{j}(x)+\varepsilon \psi_{i, j}(x / \varepsilon) \partial_{i} g_{j}(x)
$$

Conclusions

Theorem: An example where the a priori bounds are satisfied

Let $\Omega=(0,1)^{d-1} \times(-h, h)$ be a cuboid, consider homogeneous Dirichlet boundary conditions on $\partial \Omega$ and let $\Sigma \subset\left(-\frac{1}{2}, \frac{1}{2}\right)^{d-1} \times \mathbb{R}$ possess reflection symmetry in every direction $e_{j}, j=1, \ldots, d-1$. Then the corrector v^{ε} satisfies the $W^{1,1}$-bound (5)

- Helmholtz equation in a perforated domain
- $O(1)$ effect not present, $p^{\varepsilon} \rightarrow p$
- $O(\varepsilon)$ effect expressed with a limit system for v
- The proof uses a $W^{1,1}\left(\Omega_{\varepsilon}\right)$ bound and limit measures

Outlook: Many Helmholtz resonators

Ω_{ε} is perforated with period $\varepsilon>0 \ldots$ and the single inclusion has two scales!

A.Lamacz \& B.S., 2016, resonators fill an open domain
$u^{\varepsilon} \rightharpoonup v$ outside resonators, v solves the effective Helmholtz equation

$$
-\nabla \cdot\left(A_{*} \nabla v\right)=\omega^{2} \Lambda v \text { in } \Omega
$$

The effective coefficient is $\Lambda=Q-\frac{A}{L}\left(\omega^{2}-\frac{A}{L V}\right)^{-1}$
Any value!

Thank you!

