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Helmholtz equation

Sound is described by the wave equation 92p = Ap.
The time-harmonic ansatz p = p(x)e'? leads to the

Helmholtz equation

—Ap=uwp+f in Q
Here: f € L?() a prescribed source
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The Neumann sieve geometry

Helmholtz equation
—Ap° =w?p + f in Q. (1)J

Dirichlet condition on 92

Always: Homogeneous
Neumann boundary
condition on 0. \ 9

T
.17120 Z1

What is the effect of a perforation along a plane?



Notation

Inclusions: Index k € Z?~!. The single inclusion is
¢ =e (X 4+ (k,0)) for kezi?

Number of inclusions ~ ¢~ (@=1)
Perforated domain:

Ea::UEi Q. =0\ %
kel.

Limit geometry: The perforation 3. is located
along the submanifold

Io:= (R x{0})nQ

Normal vectors: n = n.(z) the outer normal of Q.
The interface has the upward pointing normal v = ¢4




A surprising observation

Helmholtz equation —Ap® = w?p® + f, assume ||p°||: < C
Extension: P. : L?(Q2.) — L*(£2) maps a function to its trivial extension
@ Multiply equation with p®, Poincaré —  [|p°||g1(q.) < C
o P.p —=pand P.(Vp*) = gin L3(Q), g=Vp e Q\ Ty
o Poincaré to compare p across layer — [p] =0, g = Vpin Q
o Limit in equation: [, Vp-Vo=w? [,po+ [of¢

Result:
The limit function p is the H'(Q)-solution of

—Ap=uw’p+f in Q (2)

— The perforation has no effect! (at order 1)

For a priori bound in L? we assume:

w? is not a Dirichlet eigenvalue of —A on

Wi o(—A)



The leading order limit

Theorem (Trivial limit and rate of convergence, DHS 2017)

Let p® be solutions to (1) and let the dimension be d = 3
With the unique weak solution p € HZ () of (2) holds

P.p° —p and P.Vp° —=Vp in L*(Q)

Let f have the regularity H' N C®, o > 0, and let 92 be of class C3
For a constant C = C(f) holds

[P = Pepll 12y + VP = PV || 20y < Ce'/? (3)

C. Dérlemann, M. Heida, and B. Schweizer. Transmission conditions for the
Helmholtz-equation in perforated domains. Vietnam J. Math., 45(1-2):241-253, 2017



The first order limit

p°: solution of (1) on Q. p: solution of (2) on Q

Define the corrector

(4)

Assume v° — v. What are the equations for v?

Orders of magnitude
© Vp is smooth, order O(1) around inclusion
o n-Vve=—1n.Vpof order O(c7)
@ v° has variations O(1)
Functions spaces
bad: [[Vv®| r2(q.) — oo expected

good: [|[Vve|[L1(q.) < C possible

p and p° near an obstacle



Let’s follow a classical advice ...

Assumption

divide et

For some C' > 0, independent of &:

imperal!
P o lwiscay < € (5)
Two questions
@ What are the equations for v? ve = 0(1)
Q@ Why should v° satisfy (5)? Vo =0(e™)

Assumption (5) implies for ¢ > 1 and v € L'(€Q):

0 Pt = vdL® weak-x as measures

@ P.Vuv® > Vv + u for some measure j with
supp(n) C T'o

o veLl (Q)and P.v® — vin L ()

o veWhi(Q\ )

OO0 O O is
Q.

Orders of magnitude near
an obstacle



The main result

Theorem (Effective system for the corrector, S.2018)

p® and p as above (solutions to Helmholtz), corrector v¢ given by

Assume the £'/2-L?-bound (3), the W'*-bound (5), and P.v® — v
Then v € WHY(Q\ T'g) is the unique solution of
—Av =w? in Q\ T

[v] =J-Vp on T (6)
[O,v] =V -(GVp) onTy

The matrices G € R¥? and .J € R? are given by cell problems
Result: weak coupling! One solves first system for p. The corrector is
given by a Helmholtz equation that involves p|r, and Vp|r, as data

B. Delourme, H. Haddar, and P. Joly. Approximate models for wave propagation
across thin periodic interfaces. J. Math. Pures Appl. (9), 98(1):28-71, 2012.



Cell problems

1 1\4!
Yi=(-—2,= x R Z:=Y\X
2°2) e
The Lipschitz domain ¥ (obstacle) is compactly contained
Definition: Cell problem
Given ¢ € RY, seek w € HL _(Z) such that
—Aw =0 in Z
Opw =n-& ondY (7)

n: X — RY is the exterior normal of Z

Lemma: Existence and uniqueness for cell problem

For ¢ € R? there exists a (unique up to constants) solution w,

we H(Z):={we H,.(Z)|Vwe L*(Z)}
Jully = [ wP+ [ u?
Z0{lyal<1} z




Effective coefficients

Recall:
For arbitrary ¢ € R? and w = wg Oyw =n - £ on O
w]=J-Vp
“Gradient”: G ¢ R?*d [8,v] = V- (GVp)

G¢& ::/ Vw e R?
z
“Jump”: J € R¢

J-&:=— lim w+ lim weR
(=0 Jya=c} ¢ J{ya=¢}

Lemma (Structural properties)

The matrix G and the vector J are well defined. They have the form

G, J J.
G — T T J — T
(T &) = ()
with G, € RA=1x=1) symmetric and positive definite, J, € R4 1,
v € R with v > |3|.




|dea of the proof: Elementary unfolding

Let p € C2°(R2) be arbitrary. Consider V : Z — R,
1
Voly) = A D ek +y)) ple(k +y))
Derive estimates for V7 using [[v°(|2(q ) + V0|20, < Ce

/ IVVEI? < c/ eI eVt (e(k + y)|* dy
Z Z %

< C’/ e 12|V (2)) P de < C
Qe

-1/2.

Conclude ]
co—win H'(Z)

as € — 0. Here w is the cell-problem solution for

1
&= —— Vpp € R?
ITol Jr,

Furthermore, there holds

ej~/ nv5<p—>|I‘0|ej'/ nw
(2> ox

=



Main proposition

Proposition (Equations for weak limits)
p%, p, and v® as above, v and p the limits:
P 2 wdL? and P.VvT 2 Vo4 p

Then y is given by
p=—GVpH"|r, (8)

and v satisfies the system (6).

On the proof I. An integration by parts for j < d:

/ajv€<p+/ v58jgp:ej-/ nvs
Q. Q. a%.

In the limit ¢ — 0:

/ajmp—l—/ej(p-d,u—l—/vajgo:—/ ej - GVpyp
Q Q Q To

This shows
ej-pu=—e;-GVp HA1 I, (9)



On the proof Il

On the proof Il. Limits in the weak form of the equation

Vv-Vgo+/V<p-du<—/ Vo -V
O\ Q Q.

1
:—/ —n-Vp<p+/ w2

a0, € .
- IEI/ (33ps0+8up8uso)+/w2w
To Q

p € C(R) that vanish on T’y and have d,¢ arbitrary on T'y:
ea-p=1%0p H" " r,
General ¢ € C2°(Q) yields the jump condition

[O,v] =V -GVp

The jump condition for values follows similarly



Proof of the W l-bound

Can a function u® with 9,u° = O(¢7!) be bounded in W11?
Proposition (Construction of W'l-bounded sequences)

R:=(—1,1)4"1 x (=h,h) a cuboid,

g € C?(R) N H3(R) prescribes boundary data

Y C Y satisfies a regularity property (solutions in L>°)
R. := R\ X, the perforated domains

Then there exists a sequence u. : R. — R of class H*(R.) such that

u. € L*(R.) NWHH(R,)

1
0: 1= <8nu5 -9 n)

pe := Aue € L™(R,)

€ L™(9%.)
o3,

are bounded in the indicated function spaces

Idea of proof: Write u. explicitly with second order cell solutions ),

ue (@) = w;(x/e)g;(x) + evbi j(x/€)Dig; ()



Conclusions

Theorem: An example where the a priori bounds are satisfied

Let Q = (0,1)4"% x (—h, h) be a cuboid, consider homogeneous Dirichlet

boundary conditions on 92 and let £ C (-1, %)d71 x R possess

reflection symmetry in every direction ¢;, j =1,...,d — 1.
Then the corrector v* satisfies the W !-bound (5)

@ Helmholtz equation in a perforated domain
o O(1) effect not present, p° — p
o O(e) effect expressed with a limit system for v

@ The proof uses a W!1(€.) bound and limit measures



Outlook: Many Helmholtz resonators

Q. is perforated with period € > 0 ... and the single inclusion has two scales!

Ry

QY Y

A.Lamacz & B.S., 2016, resonators fill an open domain

u® — v outside resonators, v solves the effective Helmholtz equation
~V - (A.Vv) = w?Avin Q

The effective coefficient is A = Q — 2 (w? — %)_1 Any value!

Thank you!




