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Helmholtz equation

Sound is described by the wave equation ∂2
t p = ∆p.

The time-harmonic ansatz p = p(x)eiωt leads to the

Helmholtz equation

−∆p = ω2p+ f in Ω

Here: f ∈ L2(Ω) a prescribed source
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A domain Ω ⊂ Rd for d = 2 Graphic taken from: Acoustics Today



The Neumann sieve geometry

Helmholtz equation

−∆pε = ω2pε + f in Ωε (1)
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Dirichlet condition on ∂Ω

Always: Homogeneous
Neumann boundary
condition on ∂Ωε \ ∂Ω

What is the effect of a perforation along a plane?



Notation

Inclusions: Index k ∈ Zd−1. The single inclusion is

Σεk := ε (Σ + (k, 0)) for k ∈ Zd−1

Number of inclusions ∼ ε−(d−1)

Perforated domain:

Σε :=
⋃
k∈Iε

Σεk Ωε := Ω \ Σ̄ε

Limit geometry: The perforation Σε is located
along the submanifold

Γ0 :=
(
Rd−1 × {0}

)
∩ Ω

Normal vectors: n = nε(x) the outer normal of Ωε

The interface has the upward pointing normal ν = ed
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A surprising observation

Helmholtz equation −∆pε = ω2pε + f , assume ‖pε‖L2 ≤ C
Extension: Pε : L2(Ωε)→ L2(Ω) maps a function to its trivial extension

Multiply equation with pε, Poincaré −→ ‖pε‖H1(Ωε) ≤ C
Pεpε ⇀ p and Pε(∇pε) ⇀ g in L2(Ω), g = ∇p ∈ Ω \ Γ0

Poincaré to compare p across layer −→ [p] = 0, g = ∇p in Ω

Limit in equation:
∫

Ω
∇p · ∇ϕ = ω2

∫
Ω
pϕ+

∫
Ω
f ϕ

Result:

The limit function p is the H1(Ω)-solution of

−∆p = ω2p+ f in Ω (2)

−→ The perforation has no effect! (at order 1)

For a priori bound in L2 we assume:
ω2 is not a Dirichlet eigenvalue of −∆ on Ω:

ω2 6∈ σ (−∆)



The leading order limit

Theorem (Trivial limit and rate of convergence, DHS 2017)

Let pε be solutions to (1) and let the dimension be d = 3
With the unique weak solution p ∈ H1

0 (Ω) of (2) holds

Pεpε → p and Pε∇pε ⇀ ∇p in L2(Ω)

Let f have the regularity H1 ∩ Cα, α > 0, and let ∂Ω be of class C3

For a constant C = C(f) holds

‖p− Pεpε‖L2(Ω) + ‖∇p− Pε∇pε‖L2(Ω) ≤ Cε
1/2 (3)

C. Dörlemann, M. Heida, and B. Schweizer. Transmission conditions for the

Helmholtz-equation in perforated domains. Vietnam J. Math., 45(1-2):241–253, 2017



The first order limit

pε: solution of (1) on Ωε p: solution of (2) on Ω

Define the corrector

vε :=
pε − p
ε

(4)

Assume vε → v. What are the equations for v?

Orders of magnitude

∇p is smooth, order O(1) around inclusion

n · ∇vε = − 1
εn · ∇p of order O(ε−1)

vε has variations O(1)

Functions spaces

bad: ‖∇vε‖L2(Ωε) →∞ expected

good: ‖∇vε‖L1(Ωε) ≤ C possible
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p and pε near an obstacle



Let’s follow a classical advice ...

divide et
impera!

Assumption

For some C > 0, independent of ε:

‖vε‖W 1,1(Ωε) ≤ C (5)

Two questions

1 What are the equations for v?

2 Why should vε satisfy (5)?

Assumption (5) implies for q > 1 and v ∈ L1(Ω):

Pεvε
∗
⇀ v dLd weak-∗ as measures

Pε∇vε
∗
⇀ ∇v + µ for some measure µ with

supp(µ) ⊂ Γ0

v ∈ Lqloc(Ω) and Pεvε → v in L1
loc(Ω)

v ∈W 1,1(Ω \ Γ0)

Ωε
ε

vε = O(1)

∇vε = O(ε−1)

Orders of magnitude near
an obstacle



The main result

Theorem (Effective system for the corrector, S. 2018)

pε and p as above (solutions to Helmholtz), corrector vε given by

vε =
pε − p
ε

Assume the ε1/2-L2-bound (3), the W 1,1-bound (5), and Pεvε → v

Then v ∈W 1,1(Ω \ Γ0) is the unique solution of

−∆v = ω2v in Ω \ Γ0

[v] = J · ∇p on Γ0

[∂νv] = ∇ · (G∇p) on Γ0

(6)

The matrices G ∈ Rd×d and J ∈ Rd are given by cell problems

Result: weak coupling! One solves first system for p. The corrector is
given by a Helmholtz equation that involves p|Γ0 and ∇p|Γ0 as data

B. Delourme, H. Haddar, and P. Joly. Approximate models for wave propagation

across thin periodic interfaces. J. Math. Pures Appl. (9), 98(1):28–71, 2012.



Cell problems

Y :=

(
−1

2
,

1

2

)d−1

per

× R Z := Y \ Σ

The Lipschitz domain Σ (obstacle) is compactly contained

Definition: Cell problem

Given ξ ∈ Rd, seek w ∈ H1
loc(Z) such that

−∆w = 0 in Z
∂nw = n · ξ on ∂Σ

(7)

n : ∂Σ→ Rd is the exterior normal of Z

Lemma: Existence and uniqueness for cell problem

For ξ ∈ Rd there exists a (unique up to constants) solution w,

w ∈ Ḣ(Z) :=
{
w ∈ H1

loc(Z)
∣∣∇w ∈ L2(Z)

}
‖w‖2

Ḣ
:=

∫
Z∩{|yd|<1}

|w|2 +

∫
Z

|∇w|2



Effective coefficients

For arbitrary ξ ∈ Rd and w = wξ
Recall:
∂nw = n · ξ on ∂Σ
[v] = J · ∇p
[∂νv] = ∇ · (G∇p)“Gradient”: G ∈ Rd×d

Gξ :=

∫
Z

∇w ∈ Rd

“Jump”: J ∈ Rd

J · ξ := − lim
ζ→∞

∫
{yd=ζ}

w + lim
ζ→−∞

∫
{yd=ζ}

w ∈ R

Lemma (Structural properties)

The matrix G and the vector J are well defined. They have the form

G =

(
Gτ Jτ
0 −|Σ|

)
J =

(
Jτ
γ

)
with Gτ ∈ R(d−1)×(d−1) symmetric and positive definite, Jτ ∈ Rd−1,
γ ∈ R with γ > |Σ|.



Idea of the proof: Elementary unfolding

Let ϕ ∈ C∞c (Ω) be arbitrary. Consider V εϕ : Z → R,

V εϕ (y) :=
1

|Iε|
∑
k∈Iε

vε(ε(k + y))ϕ(ε(k + y))

Derive estimates for V εϕ using ‖vε‖L2(Ωε) + ‖∇vε‖L2(Ωε) ≤ C ε−1/2:∫
Z

|∇V εϕ |2 ≤ C
∫
Z

εd−1
∑
k

|ε2∇vε(ε(k + y))|2 dy

≤ C
∫

Ωε

ε−dεd−1ε2|∇vε(x))|2 dx ≤ C

Conclude
V εϕ,0 ⇀ w in Ḣ1(Z)

as ε→ 0. Here w is the cell-problem solution for

ξ := − 1

|Γ0|

∫
Γ0

∇pϕ ∈ Rd

Furthermore, there holds

ej ·
∫
∂Σε

n vε ϕ→ |Γ0|ej ·
∫
∂Σ

nw



Main proposition

Proposition (Equations for weak limits)

pε, p, and vε as above, v and µ the limits:

Pεvε
∗
⇀ v dLd and Pε∇vε

∗
⇀ ∇v + µ

Then µ is given by
µ = −G∇pHd−1bΓ0 (8)

and v satisfies the system (6).

On the proof I. An integration by parts for j < d:∫
Ωε

∂jv
ε ϕ+

∫
Ωε

vε ∂jϕ = ej ·
∫
∂Σε

n vε ϕ

In the limit ε→ 0:∫
Ω

∂jv ϕ+

∫
Ω

ej ϕ · dµ+

∫
Ω

v ∂jϕ = −
∫

Γ0

ej ·G∇pϕ

This shows
ej · µ = −ej ·G∇p Hd−1bΓ0

(9)



On the proof II

On the proof II. Limits in the weak form of the equation∫
Ω\Γ0

∇v · ∇ϕ+

∫
Ω

∇ϕ · dµ←−
∫

Ωε

∇vε · ∇ϕ

= −
∫
∂Ωε

1

ε
n · ∇pϕ+

∫
Ωε

ω2vε ϕ

→ |Σ|
∫

Γ0

(
∂2
νpϕ+ ∂νp ∂νϕ

)
+

∫
Ω

ω2v ϕ

ϕ ∈ C∞c (Ω) that vanish on Γ0 and have ∂νϕ arbitrary on Γ0:

ed · µ = |Σ| ∂νp Hd−1bΓ0

General ϕ ∈ C∞c (Ω) yields the jump condition

[∂νv] = ∇ ·G∇p

The jump condition for values follows similarly



Proof of the W 1,1-bound

Can a function uε with ∂nu
ε = O(ε−1) be bounded in W 1,1?

Proposition (Construction of W 1,1-bounded sequences)

R := (−1, 1)d−1 × (−h, h) a cuboid,
g ∈ C2(R̄) ∩H3(R) prescribes boundary data
Σ ⊂ Y satisfies a regularity property (solutions in L∞)
Rε := R \ Σε the perforated domains

Then there exists a sequence uε : Rε → R of class H2(Rε) such that

uε ∈ L2(Rε) ∩W 1,1(Rε)

σε :=

(
∂nuε −

1

ε
g · n

)∣∣∣∣
∂Σε

∈ L∞(∂Σε)

ρε := ∆uε ∈ L∞(Rε)

are bounded in the indicated function spaces

Idea of proof: Write uε explicitly with second order cell solutions ψ,

uε(x) := wj(x/ε)gj(x) + εψi,j(x/ε)∂igj(x)



Conclusions

Theorem: An example where the a priori bounds are satisfied

Let Ω = (0, 1)d−1 × (−h, h) be a cuboid, consider homogeneous Dirichlet

boundary conditions on ∂Ω and let Σ ⊂
(
− 1

2 ,
1
2

)d−1 × R possess
reflection symmetry in every direction ej , j = 1, ..., d− 1.
Then the corrector vε satisfies the W 1,1-bound (5)

Helmholtz equation in a perforated domain

O(1) effect not present, pε → p

O(ε) effect expressed with a limit system for v

The proof uses a W 1,1(Ωε) bound and limit measures



Outlook: Many Helmholtz resonators

Ωε is perforated with period ε > 0 ... and the single inclusion has two scales!
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A.Lamacz & B.S., 2016, resonators fill an open domain

uε ⇀ v outside resonators, v solves the effective Helmholtz equation

−∇ · (A∗∇v) = ω2Λ v in Ω

The effective coefficient is Λ = Q− A
L

(
ω2 − A

LV

)−1
Any value!

Thank you!


