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Abstract: We give a proof for the existence of weak solutions to time-
harmonic Maxwell’s equations on bounded Lipschitz domains. This result
is well-known; our aim here is to present, in a concise way, the arguments
that lead from a compactness result for divergence free functions and a
Helmholtz decomposition to the existence result.

1. INTRODUCTION

In this note, we study time-harmonic Maxwell’s equations. Given is a bounded do-
main Q C R3, two coefficient functions e € L>°(Q2,R) and u € L>(€, R), a frequency
w > 0 and right-hand sides f, f.: Q — C3. We seek for functions E, H: Q — C?
that satisfy

(1.1a) curl E = iwpH + fj in Q,
(1.1b) curl H = —iweE + f. in Q,
with a homogeneous tangential boundary condition for F,

(1.1c) Exv=0 on 052,

where v is the exterior normal vector on J€2. The boundary condition (1.1c) is un-
derstood as E' € Hy(curl, §2). The weak solution concept and the spaces Hy(curl, 2)
and H (curl, 2) are defined below in (1.2)—(1.4).

1.1. Main result. We present and prove a result on the existence of solutions to
the Maxwell system (1.1). We will actually provide two different proofs, one with
Fredholm operator theory, one with a limiting absorption principle. We emphasize
that the result is classical, [3] is one of the more recent references. Our aim here is
to present a short derivation.

Theorem 1.1 (Existence and uniqueness). Let Q@ C R3 be a bounded Lipschitz
domain and w > 0 be a frequency. Lete € L>®(Q,R) and p € L>®(Q, R) be coefficient
functions such that, for some cy > 0, there holds € > ¢y and p > co. We assume
that system (1.1) with f, =0 and f. = 0 has only the trivial solution.

Then, for every fu,f. € L?*(,C3), system (1.1) has a unique weak solution
(E,H) € Hy(curl,Q) x H(curl, Q).

We note that the uniqueness follows immediately from the linearity of the Maxwell
system and the assumption of uniqueness for f, = f. = 0.
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In order to keep this exposition as simple as possible, we assume div(f,) = 0 in
Q and f, - v = 0 on 0€). This is understood in the weak sense, fQ frn- Vi =0 for
every v € H'(Q2). With the help of the Helmholtz decomposition, it can be shown
that this assumption is not a loss of generality.

1.2. Weak form. To formulate (1.1) in a weak sense, we use the space of L*-
functions such that the distributional curl of the function is again of class L?. More
precisely, we use

(1.2) H(curl, Q) == {u € L*(Q,C°) | curlu € L*(Q,C%)} .

This is a Hilbert space with the norm [[ul| ) = Jo {|uf* + [curlul?} and the
scalar product (u, ) = (u, @) r2q) + (curlu, curl ) 12(q).

Let us motivate a weak formulation of the Maxwell system. We choose ¢ €
H (curl, Q) arbitrarily and use e~ curl ¢ as a test-function for (1.1b). On the right-
hand side occurs an integral over E - curl ¢, which is identical to the integral over
curl E - ¢ because of the boundary condition (1.1c¢). Replacing curl E with the
expression of (1.1a), we find

(1.3) /{51curlH~curl¢—w2uH-¢} :/{—iwfh-¢+€1fe-curl¢} Y o,
Q Q

where the test-functions are all ¢ € H(curl,2). We choose (1.3) as the weak form
of system (1.1).

Note that, once a solution H of (1.3) is found, E can be defined with formula
(1.1b) and the pair (E, H) solves the coupled system. The tangential boundary
condition E' x v = 0 on 0f is satisfied in the form E € Hy(curl, §2), where
(1.4)

Hy(curl, Q) = {u € H(curl, Q)

/curlum:/u-cuﬂn VnEH(curl,Q)}.
Q Q

Our aim is to prove Theorem 1.1 with the help of the compactness result of
Lemma 1.2 and with the Helmholtz decomposition of Lemma 1.3.

1.3. Tool I: Compactness. The following lemma is classical in the theory of spaces
of functions with curl in L?.

Lemma 1.2 (Compactness). Let Q be a bounded Lipschitz domain and let p €
L>(Q) be bounded below by some positive constant. Then the space

/NU'VI/J =0 for ally € HI(Q)}
Q

is compactly imbedded in L*(Q, C?).

(1.5) Y = {u € H(curl, )

Only standard methods are necessary to prove Theorem 1.1. In order to make
that clear, we give a proof in Section 4. Proposition 4.1 in Section 4 is even more
general in the sense that only the L?-control of the divergence of uu is demanded
(and not that the divergence vanishes).

Comments on the literature regarding Lemma 1.2. The lemma is stated in [4,
Lemma A.1] with our assumption on the coefficient. A very similar version is [3,
Corollary 4.36], where positive definite symmetric matrix valued coefficients p €
L>(Q, C3*3) are allowed. We remark that closely related results are also stated and
proved for the subset of Hy(curl, Q) in [3, Theorem 4.24] and [5, Theorem 4.7], the
latter with additional regularity assumptions on the coefficient.
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1.4. Tool II: Helmholtz decomposition. The space Y of (1.5) is complemented
with the space of gradients,

(1.6) G={ueH(cwl,Q) |3 e H(Q): u=Vy} .

The choice is such that Y is orthogonal to G in the space L?(£2, C3) with the weighted
scalar product (u,v) = [, pu- 0. Furthermore, since the (distributional) curl of a
gradient always vanishes, curl(Vi) = 0, the two subspaces are also orthogonal in
X = H(curl, Q) with the scalar product (u,v)x = [ {pu-7+ curlu - curlv}. By
construction, Y is the (.,.)x-orthogonal complement of G, we may write this as
Y = G*. We therefore have the following result:

Lemma 1.3 (Helmholtz decomposition). The space X = H(curl,Q) has the or-
thogonal decomposition X =Y & G. In particular, an arbitrary element uw € X can
be written uniquely as uw = v + Vi withv € Y and ¢ € H(Q).

2. EXISTENCE PROOF WITH FREDHOLM OPERATOR THEORY

In our first existence proof, we re-formulate problem (1.3) with the Helmholtz
decomposition. We seek solutions H of (1.3) in the space Y of (1.5). We recall that
the condition H € Y encodes that the divergence of uH vanishes and that H - v
vanishes along the boundary.

Lemma 2.1 (Equivalent formulation in Y'). The Mazwell system in the form (1.3)
18 equivalent to: Find H € Y with
(2.1)

/{51cur1[—[~curl<p—w2u[-[~gp}:/{—iwfh-<p+81fe~curl<p} VeoeY.
Q Q

Proof. Let H be a solution of (1.3). For arbitrary ¢ € H'(2,R), we define ¢ = V);
because of the distributional equality curl Vi = 0, there holds ¢ € H(curl,Q).
Using ¢ as a test-function in (1.3), we note that all terms except for fQ WiuH - @
vanish because of curly = 0 and [, fr - Vo = 0 for ¢ € H'(Q). The result is
that uH is orthogonal to gradients, i.e., H € Y. Since the space of test-functions is
smaller in (2.1) than in (1.3), this implies that (2.1) holds.

Vice versa, let H be a solution of (2.1). Given an arbitrary test-function ¢ €
X = H(curl,Q), we write ¢ = ¢ + Vi) with ¢ € Y and ¢ € H*(f2), see Lemma 1.3.
We use that (1.3) is linear in ¢, we can treat all contributions separately. Inserting
V1 in (1.3), arguing as above and exploiting H € Y, we find that all terms vanish.
Inserting ¢, the equality holds because of (2.1). This shows that (1.3) is satisfied
for the test-function ¢. Since ¢ was arbitrary, H is a solution of (1.3). O

The re-formulation (2.1) is useful since Lemma 1.2 provides compactness of Y.

Proof of Theorem 1.1 with Fredholm operators. On Y, we define sesquilinear forms
a,b: Y xY — C and a linear right-hand side f: Y — C by setting, for every
u,peY,

a(u, p) = / {u o +eteurlu- Curla} ,

Q
bw.0) = [{u-G+wtuuah, f0) = [{-twh -G+, cwld)
Q Q



4 An existence result for Maxwell’s equations
Lemma 2.1 yields: The Maxwell system (1.3) is equivalent to: Find H € Y with
(2.2) a(H,p) —b(H,p) = f(g) VeeY.

This is the equation that we have to solve.

The sesquilinear form a defines a map A: Y — Y’ from Y into the dual space Y’
by Au = a(u,-). By definition of the scalar product in Y C X = H(curl, ), the
form a is coercive on Y. The Lemma of Lax-Milgram implies that A: Y — Y is
invertible.

We now exploit that the embedding ¢: Y — L?*(2, C?) is compact, see Lemma 1.2.
The multiplication map B: u — (1+w?u) u corresponding to b is linear and bounded
as a map B: L*(Q,C3) — L?(Q,C?). We denote the concatenation with an embed-
ding into Y’ with the same letter, B: L*(Q,C?) — Y”.

The field H € Y solves (2.2) if and only if

AH—(Bol)H=f inY”’.
Applying A~!, we find the equivalent relation
(id—At'oBoH =A"f inY.

The operator A™' o B o ¢ is compact, since ¢ is compact and the other operators
are continuous. This implies that the operator F' :=id =A=' o B o is a Fredholm
operator of index zero, see [1, Theorem 11.8].

One assumption in Theorem 1.1 is that the homogeneous system has only the
trivial solution. Since all our re-formulations of the Maxwell system are equivalent,
this implies that F' = id —A~! o B o ¢ is injective. Since the index is zero, the
injectivity implies the surjectivity. Surjectivity of F' implies that for every right-
hand side there exists a solution of (2.2). Since the formulations are equivalent, we
have also found a solution of (1.1) and Theorem 1.1 is proved O

3. EXISTENCE PROOF WITH A LIMITING ABSORPTION PRINCIPLE

In this section, we prove Theorem 1.1 with a limiting absorption principle. A
limiting absorption principle considers the equation with a damping term, which is
sent to zero. In this text, we use a small constant § > 0 and replace the pre-factor
w? in equation (1.3) by w?u —id. This equation has a solution Hs. We find a limit
H = lims_,q Hs, which is a solution of (1.3).

In the first step, we seek a solution Hs € H(curl, Q) of
(3.1)

/ {5_1 curl Hs - curl ¢ — (w?p — i6) Hy - qb} = / {—iwfh o+, Curlgb} Yo,
Q

Q

where the test-functions are arbitrary functions ¢ € H(curl, ).

Proof of Theorem 1.1 with limiting absorption. Lemma 3.1 provides a unique solu-
tion Hj of (3.1). Lemma 3.2 shows that the sequence Hs is bounded in H (curl, ©2)
(in the setting of Theorem 1.1, where it is assumed that (1.3) has only the trivial
solution for f, = f. = 0). Since H(curl, §2) is reflexive, there exists a subsequence of
Hs, which converges weakly to some limit H € H(curl,€2). The weak convergence
allows us to perform the limit 6 — 0 in (3.1) along the subsequence. We obtain that
H solves (1.3). O
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Lemma 3.1 (Existence of a solution for the problem with absorption). Let Q C R?
be a bounded Lipschitz domain and w € R\ {0} a frequency. Let e € L>(2,R) and
p € L®(Q,R) be coefficient functions such that, for some ¢y > 0, there holds € > ¢
and p > co. Then there exists 69 > 0 such that, for every ¢ € (0,dy), equation (3.1)
has a unique weak solution Hs € H(curl, ).

Proof. We define the bilinear form as on H (curl, 2) by setting, for u, ¢ € H(curl, ),

as(u, @) = / {e P cwrlu - curl @ + (i0 — w’p)u - B} .
Q

The form as allows us to rewrite (3.1) as

(3.2) as(Hs, ¢) = / {—iwfr-o+e ' fo-curlg} V¢ € H(curl, ).
Q

We calculate, for arbitrary u € H(curl, ),

I as(u, u) = 0flul|Z2 g ,

2

Re as(u,u) > esssup(e) | cur1u||%2(m — wess sup(,u)||u||%z(g) :

We observe the following fact in R? = C: For every vector z = (11,22) € R?
and every s € [0,1], there holds |z| > max{|x1]|, |22} > (1 — 8)|z1| + s|za]. This
inequality allows to calculate, with s = 62,

las(u,u)| > (1 — 6%) Im as(u, u) + 0° Re as(u, u)
> (1= 83l + 0% (ess sup() | curlula oy — whesssup(p)fulley )

Choosing §y > 0 small, we achieve (1 — §2)d > 26%w?esssup(u) for all § < &y, and
obtain that as is coercive. Problem (3.2) for Hs can therefore be solved with the
Lemma of Lax-Milgram. OJ

Lemma 3.2 (Boundedness of solutions to the problem with absorption). Let the
assumptions of Lemma 3.1 be satisfied. For a sequence 6 — 0, let Hs € H(curl, §2) be
the corresponding sequence of solutions of (3.1). Suppose that (1.3) for fr, = fo =0
has only the trivial solution H = 0. Then, Hs is bounded in H (curl, (2).

Proof. Step 1: Preparation. For a contradiction argument, we assume that there
exists a subsequence Hj such that || Hs|| g(cur0) — 00. We use Hs as a test-function
in (3.2) and use the upper bound C. = esssup(e) to obtain

C Y| curl H5||%2(Q) < /6_1 curl Hy - curl Hy
Q
= / —(i6 — w?pu)Hs - Hs + / {—iwfh "Hs+e'f.- CUIIE} )
Q Q
For arbitrary A > 0, we continue this calculation with Young’s inequality and find
C M| curl H5||%2(Q) < CHH5H%2(Q) + Cx + Al CUﬂH&H%%Q) ;

for some C' depending on w, f, and u, and C depending on ¢, f. and A. Choosing
A = C-'/2 and subtracting the term A|| curl Hs|75 g, on both sides, we find, for
some constant C, the inequality || curl Hs||72q) < C (1 + [|Hs[|72q)-

In particular: The divergence ||Hs|| g(cur,0) — 00 implies ||Hs||p2(q) — oo.
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Step 2: Normalization. We normalize the sequence Hs and consider the new
sequence Hy = Hj/||Hs| 12(0,c3). This sequence satisfies

(3.3) as(fls, 0) = 1Hsl 7 oo / (“iwfy-B+ef-culd) Vo e Hicul ).
Q

The result of Step 1 together with || Hs||z2q.cs) = 1 shows that || curl ﬁlgH%Q(Q) is
bounded.

Since H(curl, Q) is reflexive, there exists a subsequence of Hs, which converges
weakly to some limit € H(curl, Q), in particular Hs — H in L*(Q) and curl H; —
curl H in L*(Q). The weak convergence allows us to perform the limit § — 0 in (3.3)
along the subsequence. We obtain that the limit H solves (1.3) for f;, = f. = 0. Our
assumption was that there is no non-trivial solution to the homogeneous problem:;
this implies H = 0.

Step 3: Strong convergence. In this step we show the strong convergence of
Hj in L*(,C?) along a subsequence. Once this is obtained, we have the desired
contradiction: || Hy|| r2(0) = 1is in conflict with the strong convergence Hy — H =0.

In order to show the strong convergence, we decompose Hj; by means of the
Helmholtz decomposition of Lemma 1.3: ]:L; = Ij_fg/ + Vs for ]:Ig/ €Y and s €
H'(Q). The compactness of Y shown in Lemma 1.2 allows us to pass to a subse-
quence such that H) converges strongly in L*(Q, C?).

Let us use the test-function ¢ = Vs in (3.1). Since the curl of a gradient vanishes
and since we assumed that f, is orthogonal to gradients, we obtain

/(,u —iw 20)Hs - Vips = 0.

Q

Inserting the decomposition Hs = ]:I(SY + Vs, we find

(3.4) i/w_25ﬁ5'V%—/#|V%|2 =/uﬁ§-V%=o,
Q Q Q

where we used the property f[gf € Y in the last equality. The lower bound . > ¢y > 0
allows us to obtain from (3.4)

col Vsl 20 S/QMV%MQ Zi/QW_QCSﬁa'V%-

The Cauchy-Schwarz inequality and the normalization Hf{(;” r2(0) = 1 imply

col|Vbs||320) < 0w ™[ Hsl| z2(0) | Vsl 220y = 6w ™2 Vsl L2 -

Dividing by [|Vs||r2(q) if this term is different from zero, we find ||Vs||r2(q) — 0
as 0 — 0. This is the desired strong convergence of V.

The strong convergence of H Y together with the strong convergence of Vs implies
the strong convergence of Hs = HY + Vs in L*(R2). This provides the desired
contradiction and concludes the proof. 0

4. COMPACTNESS PROPERTY

We include a proof for the compactness result in order to have this exposition self-
contained. The compactness has some relations with the div-curl lemma, sometimes
called compensated compactness. Knowledge on the curl and on the divergence of a
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function somehow controls all derivatives. Loosely speaking, this property is already
suggested by the relation A = — curl curl +V div.

Proposition 4.1 (Compactness when rotation and divergence are bounded in L?).
Let Q C R3 be a bounded Lipschitz domain, let u; € L*(Q,C?) be a sequence such
that the distributional curl and the distributional divergence are bounded in L?,

4.1 curlu; = f; € L*(Q, C?) bounded,

(4.1) j j

4.2 divu; = g; € L*(Q2,C) bounded.
j j

Furthermore, we demand vanishing normal boundary values of u; by imposing fQ uj -
Vp=— fQ gj ¢ for all o € H'(Q,C). Then, there exists a subsequence j — 0o and
a limit function w € L*(Q, C?) such that u; — w in L*(Q2, C?) along this subsequence.

Proof. We first prove the Proposition in Steps 1 to 3 under the assumption that 2
is simply connected. The assumption of simple connectedness is removed in Step 4.
The bounded set €2 is contained in a large ball. For a radius R > 0 we start our
proof with Q € Q = Bg(0) C R3. Later on, we will choose a smaller open bounded
set 0 C R3.

Step 1: A wvector potential for f;. The dlvergence of u; is trivially extended, we
define §; € L*(Q) as §;lo = g; and §;lo = 0 in Q \ Q. The extension f; of f; (with
vanishing divergence in Q) is chosen such that div f] vanishes in €; we use here
Lemma 4.2 and choose a smaller set containing Q, if necessary.

As a function with vanishing dlvergence f] can be written with a vector potential
w; € L*(Q,C?) on the larger domain €,

(4.3) f; = curla, .

The existence of such a vector potential is classical theory, w; can be constructed
with the help of path integrals over the components of f;, see [2] and [6] for modern
references.

Step 2: Modification of the vector potential w;. We want to modify the vector
potential such that it is divergence-free. We find such a modified potential in the
form W =w; — ij where 1/11 solves

Alﬁj = div 1I)j

in Q (with homogeneous Dirichlet conditions on dQ) so that div(1¥;) = 0. Since w;
is bounded in L2(Q), we find ¢; bounded in H*(Q). The result is a bounded sequence
W, € L*(Q,C?) with the (distributional) rotation f; and vanishing divergence. We
note that, because of A = — curl curl +V div, the function Wj e H 1((2, C3) satisfies,
in the sense of distributions, AW = —curl f] € H'(Q). The sequence W is there-
fore locally of class H!. By possibly choosing a smaller open set Q (still containing
Q), we achieve that the sequence W; € H'(£) is bounded (Caccioppoli’s inequality).
The restriction W; := W]\Q has the rotation f; and vanishing divergence.

Since the sequence is bounded in H'(Q, C?), there exists a subsequence with strong
convergence of Wj in LZ(Q, C?). We consider only this subsequence in the following.

Step 3: Construction of a scalar potential. We consider the function v; == u; —

W, € L*(Q,R3) with vanishing rotation. Since ) is simply connected, the function
has a scalar potential ¢;,

UJ = V%



8 An existence result for Maxwell’s equations

We have therefore written the original sequence as u; = W; + V¢;. Since W;
converges strongly, the lemma is proven when we show that V¢; converges strongly
in L? along a subsequence.

With the normal vector v on 02, the function ¢, is a solution of

Agj=g;in €, v -Vé;=—v-W;ondQ,

where we used v - u; = 0 on the boundary. This must be understood in the weak
form: The potential ¢; is a solution of the problem

(4.4) /QV@'Vw:—/ngWr/ijso

for every o € H'(Q). To have uniqueness of solutions, we demand that the integral
Jo@; = 0 and define H}(Q) as the space of H'(Q)-functions satisfying this condi-
tion. The integrability condition on g; and W, is that the right-hand side of (4.4)
vanishes for constant functions (. This condition is satisfied in our setting because
of divW; = 0 and the assumption on u; in the lemma.

The theorem of Lax—Milgram can be applied, the solution operator to this prob-
lem, 7o: (g5, W;) — ¢;, is a bounded linear operator To: (H'(Q))'x L*(02) — H}(S)
(we suppress here that the argument must satisfy the integrability condition).

Additionally, we have the compactness of the embedding L?(2) C (H(2))" and
the compactness of the trace operator H*(Q2) — L?*(9€2). This shows that the so-
lution operator as a map 71: L*(Q) x H'(Q) — H}(Q) is compact. Since g; and
W; are bounded in the left spaces, we conclude that ¢; = T;(g;, W;) has a conver-
gent subsequence in H'(Q). This shows that V¢; has a convergent subsequence in
L*(©,R?) and concludes the proof for simply connected domains.

Step 4: Removing the assumption of simple connectedness. Let now €2 be an
arbitrary bounded Lipschitz domain. We choose a finite family of simply connected
Lipschitz subdomains €, C Q, &k =1, ..., K that cover €. We choose a subordinate
family of smooth cut-off functions 7. The lemma is then applied in each subdomain
(2, to the sequence wu;ny. O

The task in the subsequent lemma is to extend the function F' to a function F
such that the normal component of F' - v has no jump on 0f2.

Lemma 4.2 (Extension with bounded divergence). Let 2 and Q be Lipschitz do-
mains in R™ with Q € Q. Let F € L*(Q,R") be a function with a distributional
divergence p = div(F) € L*(,R). Then, there exists an extension F' € L*(Q, R")
such that the distributional divergence p = div(F) satisfies p € L*(,R). One can

choose F such that the function p coincides with the trivial extension of p in a
neighborhood of €.

Proof. Since the problem can be localized, it suffices to consider the case that ¥ =
Q\ Q is a domain with the two boundary components T' :== 99 and 9.

We must construct F on the exterior domain Y. This proof uses an extension
operator for functions ¢ € H'(3,R). We use the fact that there exists a bounded
extension operator £: H'(X,R) — H'(, R) such that ¢ = £(¢) satisfies P|y, = .

With the extension operator £ we define p € HL(X) as the solution of

(4.5) /ZVp-sz—AF-VE(w)—/Sng(w)
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for all ¢ € H}:(X), where H{:(X) is the space of H'-functions on ¥ that vanish on T
This problem can be solved with p € HL(X) with the lemma of Lax—Milgram since
the right-hand side defines a continuous linear form on HL(X). We set

Fla) = F(x) for x € Q,
Vp(x) forz e X.

It remains to calculate the divergence of F in Q. For an arbitrary test-function
Y € H'(Q) and its restriction 1 == 1|s € H'(X) we calculate

/QF-V@E:/QF-V@ZJr/EVp-Vw

(”;”)/QF-W/?—/QFVS(@D)—/QPg(W
:/QF-V[QE—S(w)]—/ng(@/J)

—— [sli-ewi- [ pew=- [ o0

This verifies that the divergence of F' coincides with the trivial extension of p. [
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