
Lecture notes:

Existence result for Maxwell’s equations

on bounded Lipschitz domains

B. Schweizer1, D. Wiedemann1

18. November 2024

Abstract: We give a proof for the existence of weak solutions to time-
harmonic Maxwell’s equations on bounded Lipschitz domains. This result
is well-known; our aim here is to present, in a concise way, the arguments
that lead from a compactness result for divergence free functions and a
Helmholtz decomposition to the existence result.

1. Introduction

In this note, we study time-harmonic Maxwell’s equations. Given is a bounded do-
main Ω ⊂ R3, two coefficient functions ε ∈ L∞(Ω,R) and µ ∈ L∞(Ω,R), a frequency
ω > 0 and right-hand sides fh, fe : Ω → C3. We seek for functions E,H : Ω → C3

that satisfy

curlE = iωµH + fh in Ω ,(1.1a)

curlH = −iωεE + fe in Ω ,(1.1b)

with a homogeneous tangential boundary condition for E,

E × ν = 0 on ∂Ω ,(1.1c)

where ν is the exterior normal vector on ∂Ω. The boundary condition (1.1c) is un-
derstood as E ∈ H0(curl,Ω). The weak solution concept and the spaces H0(curl,Ω)
and H(curl,Ω) are defined below in (1.2)–(1.4).

1.1. Main result. We present and prove a result on the existence of solutions to
the Maxwell system (1.1). We will actually provide two different proofs, one with
Fredholm operator theory, one with a limiting absorption principle. We emphasize
that the result is classical, [3] is one of the more recent references. Our aim here is
to present a short derivation.

Theorem 1.1 (Existence and uniqueness). Let Ω ⊂ R3 be a bounded Lipschitz
domain and ω > 0 be a frequency. Let ε ∈ L∞(Ω,R) and µ ∈ L∞(Ω,R) be coefficient
functions such that, for some c0 > 0, there holds ε ≥ c0 and µ ≥ c0. We assume
that system (1.1) with fh = 0 and fe = 0 has only the trivial solution.

Then, for every fh, fe ∈ L2(Ω,C3), system (1.1) has a unique weak solution
(E,H) ∈ H0(curl,Ω)×H(curl,Ω).

We note that the uniqueness follows immediately from the linearity of the Maxwell
system and the assumption of uniqueness for fh = fe = 0.
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In order to keep this exposition as simple as possible, we assume div(fh) = 0 in
Ω and fh · ν = 0 on ∂Ω. This is understood in the weak sense,

∫
Ω
fh · ∇ψ = 0 for

every ψ ∈ H1(Ω). With the help of the Helmholtz decomposition, it can be shown
that this assumption is not a loss of generality.

1.2. Weak form. To formulate (1.1) in a weak sense, we use the space of L2-
functions such that the distributional curl of the function is again of class L2. More
precisely, we use

(1.2) H(curl,Ω) :=
{
u ∈ L2(Ω,C3) | curlu ∈ L2(Ω,C3)

}
.

This is a Hilbert space with the norm ∥u∥2H(curl,Ω) :=
∫
Ω
{|u|2 + | curlu|2} and the

scalar product ⟨u, φ⟩ := ⟨u, φ⟩L2(Ω) + ⟨curlu, curlφ⟩L2(Ω).
Let us motivate a weak formulation of the Maxwell system. We choose ϕ ∈

H(curl,Ω) arbitrarily and use ε−1 curlϕ as a test-function for (1.1b). On the right-
hand side occurs an integral over E · curlϕ, which is identical to the integral over
curlE · ϕ because of the boundary condition (1.1c). Replacing curlE with the
expression of (1.1a), we find

(1.3)

∫
Ω

{
ε−1 curlH · curlϕ− ω2µH · ϕ

}
=

∫
Ω

{
−iωfh · ϕ+ ε−1fe · curlϕ

}
∀ ϕ ,

where the test-functions are all ϕ ∈ H(curl,Ω). We choose (1.3) as the weak form
of system (1.1).

Note that, once a solution H of (1.3) is found, E can be defined with formula
(1.1b) and the pair (E,H) solves the coupled system. The tangential boundary
condition E × ν = 0 on ∂Ω is satisfied in the form E ∈ H0(curl,Ω), where
(1.4)

H0(curl,Ω) :=

{
u ∈ H(curl,Ω)

∣∣∣∣∫
Ω

curl u · η =

∫
Ω

u · curl η ∀η ∈ H(curl,Ω)

}
.

Our aim is to prove Theorem 1.1 with the help of the compactness result of
Lemma 1.2 and with the Helmholtz decomposition of Lemma 1.3.

1.3. Tool I: Compactness. The following lemma is classical in the theory of spaces
of functions with curl in L2.

Lemma 1.2 (Compactness). Let Ω be a bounded Lipschitz domain and let µ ∈
L∞(Ω) be bounded below by some positive constant. Then the space

(1.5) Y :=

{
u ∈ H(curl,Ω)

∣∣∣∣∫
Ω

µu · ∇ψ = 0 for all ψ ∈ H1(Ω)

}
is compactly imbedded in L2(Ω,C3).

Only standard methods are necessary to prove Theorem 1.1. In order to make
that clear, we give a proof in Section 4. Proposition 4.1 in Section 4 is even more
general in the sense that only the L2-control of the divergence of µu is demanded
(and not that the divergence vanishes).

Comments on the literature regarding Lemma 1.2. The lemma is stated in [4,
Lemma A.1] with our assumption on the coefficient. A very similar version is [3,
Corollary 4.36], where positive definite symmetric matrix valued coefficients µ ∈
L∞(Ω,C3×3) are allowed. We remark that closely related results are also stated and
proved for the subset of H0(curl,Ω) in [3, Theorem 4.24] and [5, Theorem 4.7], the
latter with additional regularity assumptions on the coefficient.
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1.4. Tool II: Helmholtz decomposition. The space Y of (1.5) is complemented
with the space of gradients,

(1.6) G :=
{
u ∈ H(curl,Ω)

∣∣ ∃ψ ∈ H1(Ω) : u = ∇ψ
}
.

The choice is such that Y is orthogonal to G in the space L2(Ω,C3) with the weighted
scalar product ⟨u, v⟩ =

∫
Ω
µu · v. Furthermore, since the (distributional) curl of a

gradient always vanishes, curl(∇ψ) = 0, the two subspaces are also orthogonal in
X := H(curl,Ω) with the scalar product ⟨u, v⟩X :=

∫
Ω
{µu · v + curlu · curl v}. By

construction, Y is the ⟨., .⟩X-orthogonal complement of G, we may write this as
Y = G⊥. We therefore have the following result:

Lemma 1.3 (Helmholtz decomposition). The space X := H(curl,Ω) has the or-
thogonal decomposition X = Y ⊕G. In particular, an arbitrary element u ∈ X can
be written uniquely as u = v +∇ψ with v ∈ Y and ψ ∈ H1(Ω).

2. Existence proof with Fredholm operator theory

In our first existence proof, we re-formulate problem (1.3) with the Helmholtz
decomposition. We seek solutions H of (1.3) in the space Y of (1.5). We recall that
the condition H ∈ Y encodes that the divergence of µH vanishes and that H · ν
vanishes along the boundary.

Lemma 2.1 (Equivalent formulation in Y ). The Maxwell system in the form (1.3)
is equivalent to: Find H ∈ Y with
(2.1)∫
Ω

{
ε−1 curlH · curlφ− ω2µH · φ

}
=

∫
Ω

{
−iωfh · φ+ ε−1fe · curlφ

}
∀ φ ∈ Y .

Proof. Let H be a solution of (1.3). For arbitrary ψ ∈ H1(Ω,R), we define φ = ∇ψ;
because of the distributional equality curl∇ψ = 0, there holds φ ∈ H(curl,Ω).
Using φ as a test-function in (1.3), we note that all terms except for

∫
Ω
ω2µH · φ

vanish because of curlφ = 0 and
∫
Ω
fh · ∇ψ = 0 for ψ ∈ H1(Ω). The result is

that µH is orthogonal to gradients, i.e., H ∈ Y . Since the space of test-functions is
smaller in (2.1) than in (1.3), this implies that (2.1) holds.

Vice versa, let H be a solution of (2.1). Given an arbitrary test-function ϕ ∈
X = H(curl,Ω), we write ϕ = φ+∇ψ with φ ∈ Y and ψ ∈ H1(Ω), see Lemma 1.3.
We use that (1.3) is linear in ϕ, we can treat all contributions separately. Inserting
∇ψ in (1.3), arguing as above and exploiting H ∈ Y , we find that all terms vanish.
Inserting φ, the equality holds because of (2.1). This shows that (1.3) is satisfied
for the test-function ϕ. Since ϕ was arbitrary, H is a solution of (1.3). □

The re-formulation (2.1) is useful since Lemma 1.2 provides compactness of Y .

Proof of Theorem 1.1 with Fredholm operators. On Y , we define sesquilinear forms
a, b : Y × Y → C and a linear right-hand side f : Y → C by setting, for every
u, ϕ ∈ Y ,

a(u, ϕ) :=

∫
Ω

{
u · ϕ+ ε−1 curlu · curlϕ

}
,

b(u, ϕ) :=

∫
Ω

{
u · ϕ+ ω2µu · ϕ

}
, f(ϕ) :=

∫
Ω

{
−iωfh · ϕ+ ε−1fe · curlϕ

}
.
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Lemma 2.1 yields: The Maxwell system (1.3) is equivalent to: Find H ∈ Y with

(2.2) a(H,φ)− b(H,φ) = f(φ) ∀ φ ∈ Y .

This is the equation that we have to solve.
The sesquilinear form a defines a map A : Y → Y ′ from Y into the dual space Y ′

by Au := a(u, ·). By definition of the scalar product in Y ⊂ X = H(curl,Ω), the
form a is coercive on Y . The Lemma of Lax–Milgram implies that A : Y → Y ′ is
invertible.

We now exploit that the embedding ι : Y → L2(Ω,C3) is compact, see Lemma 1.2.
The multiplication map B : u 7→ (1+ω2µ)u corresponding to b is linear and bounded
as a map B : L2(Ω,C3) → L2(Ω,C3). We denote the concatenation with an embed-
ding into Y ′ with the same letter, B : L2(Ω,C3) → Y ′.
The field H ∈ Y solves (2.2) if and only if

AH − (B ◦ ι)H = f in Y ′ .

Applying A−1, we find the equivalent relation

(id−A−1 ◦B ◦ ι)H = A−1f in Y .

The operator A−1 ◦ B ◦ ι is compact, since ι is compact and the other operators
are continuous. This implies that the operator F := id−A−1 ◦ B ◦ ι is a Fredholm
operator of index zero, see [1, Theorem 11.8].

One assumption in Theorem 1.1 is that the homogeneous system has only the
trivial solution. Since all our re-formulations of the Maxwell system are equivalent,
this implies that F = id−A−1 ◦ B ◦ ι is injective. Since the index is zero, the
injectivity implies the surjectivity. Surjectivity of F implies that for every right-
hand side there exists a solution of (2.2). Since the formulations are equivalent, we
have also found a solution of (1.1) and Theorem 1.1 is proved □

3. Existence proof with a limiting absorption principle

In this section, we prove Theorem 1.1 with a limiting absorption principle. A
limiting absorption principle considers the equation with a damping term, which is
sent to zero. In this text, we use a small constant δ > 0 and replace the pre-factor
ω2µ in equation (1.3) by ω2µ− iδ. This equation has a solution Hδ. We find a limit
H = limδ→0Hδ, which is a solution of (1.3).

In the first step, we seek a solution Hδ ∈ H(curl,Ω) of
(3.1)∫
Ω

{
ε−1 curlHδ · curlϕ− (ω2µ− iδ)Hδ · ϕ

}
=

∫
Ω

{
−iωfh · ϕ+ ε−1fe · curlϕ

}
∀ ϕ ,

where the test-functions are arbitrary functions ϕ ∈ H(curl,Ω).

Proof of Theorem 1.1 with limiting absorption. Lemma 3.1 provides a unique solu-
tion Hδ of (3.1). Lemma 3.2 shows that the sequence Hδ is bounded in H(curl,Ω)
(in the setting of Theorem 1.1, where it is assumed that (1.3) has only the trivial
solution for fh = fe = 0). Since H(curl,Ω) is reflexive, there exists a subsequence of
Hδ, which converges weakly to some limit H ∈ H(curl,Ω). The weak convergence
allows us to perform the limit δ → 0 in (3.1) along the subsequence. We obtain that
H solves (1.3). □



B. Schweizer and D. Wiedemann 5

Lemma 3.1 (Existence of a solution for the problem with absorption). Let Ω ⊂ R3

be a bounded Lipschitz domain and ω ∈ R \ {0} a frequency. Let ε ∈ L∞(Ω,R) and
µ ∈ L∞(Ω,R) be coefficient functions such that, for some c0 > 0, there holds ε ≥ c0
and µ ≥ c0. Then there exists δ0 > 0 such that, for every δ ∈ (0, δ0), equation (3.1)
has a unique weak solution Hδ ∈ H(curl,Ω).

Proof. We define the bilinear form aδ on H(curl,Ω) by setting, for u, φ ∈ H(curl,Ω),

aδ(u, φ) :=

∫
Ω

{
ε−1 curlu · curlφ+ (iδ − ω2µ)u · φ

}
.

The form aδ allows us to rewrite (3.1) as

(3.2) aδ(Hδ, ϕ) =

∫
Ω

{
−iωfh · ϕ+ ε−1fe · curlϕ

}
∀ϕ ∈ H(curl,Ω) .

We calculate, for arbitrary u ∈ H(curl,Ω),

Im aδ(u, u) = δ∥u∥2L2(Ω) ,

Re aδ(u, u) ≥ ess sup(ε)−1∥ curlu∥2L2(Ω) − ω2ess sup(µ)∥u∥2L2(Ω) .

We observe the following fact in R2 ≡ C: For every vector x = (x1, x2) ∈ R2

and every s ∈ [0, 1], there holds |x| ≥ max{|x1|, |x2|} ≥ (1 − s)|x1| + s|x2|. This
inequality allows to calculate, with s = δ2,

|aδ(u, u)| ≥ (1− δ2) Im aδ(u, u) + δ2Re aδ(u, u)

≥ (1− δ2)δ∥u∥2L2(Ω) + δ2
(
ess sup(ε)−1∥ curlu∥2L2(Ω) − ω2ess sup(µ)∥u∥2L2(Ω)

)
.

Choosing δ0 > 0 small, we achieve (1 − δ2)δ ≥ 2δ2ω2ess sup(µ) for all δ < δ0, and
obtain that aδ is coercive. Problem (3.2) for Hδ can therefore be solved with the
Lemma of Lax–Milgram. □

Lemma 3.2 (Boundedness of solutions to the problem with absorption). Let the
assumptions of Lemma 3.1 be satisfied. For a sequence δ → 0, let Hδ ∈ H(curl,Ω) be
the corresponding sequence of solutions of (3.1). Suppose that (1.3) for fh = fe = 0
has only the trivial solution H = 0. Then, Hδ is bounded in H(curl,Ω).

Proof. Step 1: Preparation. For a contradiction argument, we assume that there
exists a subsequence Hδ such that ∥Hδ∥H(curl,Ω) → ∞. We use Hδ as a test-function
in (3.2) and use the upper bound Cε := ess sup(ε) to obtain

C−1
ε ∥ curlHδ∥2L2(Ω) ≤

∫
Ω

ε−1 curlHδ · curlHδ

=

∫
Ω

−(iδ − ω2µ)Hδ ·Hδ +

∫
Ω

{
−iωfh ·Hδ + ε−1fe · curlHδ

}
.

For arbitrary λ > 0, we continue this calculation with Young’s inequality and find

C−1
ε ∥ curlHδ∥2L2(Ω) ≤ C∥Hδ∥2L2(Ω) + Cλ + λ∥ curlHδ∥2L2(Ω) ,

for some C depending on ω, fh and µ, and Cλ depending on ε, fe and λ. Choosing
λ = C−1

ε /2 and subtracting the term λ∥ curlHδ∥2L2(Ω) on both sides, we find, for

some constant C, the inequality ∥ curlHδ∥2L2(Ω) ≤ C (1 + ∥Hδ∥2L2(Ω)).

In particular: The divergence ∥Hδ∥H(curl,Ω) → ∞ implies ∥Hδ∥L2(Ω) → ∞.



6 An existence result for Maxwell’s equations

Step 2: Normalization. We normalize the sequence Hδ and consider the new
sequence H̃δ := Hδ/∥Hδ∥L2(Ω,C3). This sequence satisfies

(3.3) aδ(H̃δ, ϕ) = ∥Hδ∥−1
L2(Ω,C3)

∫
Ω

{
−iωfh · ϕ+ ε−1fe · curlϕ

}
∀ϕ ∈ H(curl,Ω) .

The result of Step 1 together with ∥H̃δ∥L2(Ω,C3) = 1 shows that ∥ curl H̃δ∥2L2(Ω) is

bounded.
Since H(curl,Ω) is reflexive, there exists a subsequence of H̃δ, which converges

weakly to some limit H̃ ∈ H(curl,Ω), in particular H̃δ ⇀ H̃ in L2(Ω) and curl H̃δ ⇀
curl H̃ in L2(Ω). The weak convergence allows us to perform the limit δ → 0 in (3.3)
along the subsequence. We obtain that the limit H̃ solves (1.3) for fh = fe = 0. Our
assumption was that there is no non-trivial solution to the homogeneous problem;
this implies H̃ = 0.

Step 3: Strong convergence. In this step we show the strong convergence of
H̃δ in L2(Ω,C3) along a subsequence. Once this is obtained, we have the desired
contradiction: ∥H̃δ∥L2(Ω) = 1 is in conflict with the strong convergence H̃δ → H̃ = 0.

In order to show the strong convergence, we decompose H̃δ by means of the
Helmholtz decomposition of Lemma 1.3: H̃δ = H̃Y

δ + ∇ψδ for H̃Y
δ ∈ Y and ψδ ∈

H1(Ω). The compactness of Y shown in Lemma 1.2 allows us to pass to a subse-
quence such that H̃Y

δ converges strongly in L2(Ω,C3).

Let us use the test-function ϕ = ∇ψδ in (3.1). Since the curl of a gradient vanishes
and since we assumed that fh is orthogonal to gradients, we obtain∫

Ω

(µ− iω−2δ)H̃δ · ∇ψδ = 0 .

Inserting the decomposition H̃δ = H̃Y
δ +∇ψδ, we find

i

∫
Ω

ω−2δH̃δ · ∇ψδ −
∫
Ω

µ|∇ψδ|2 =
∫
Ω

µH̃Y
δ · ∇ψδ = 0 ,(3.4)

where we used the property H̃Y
δ ∈ Y in the last equality. The lower bound µ ≥ c0 > 0

allows us to obtain from (3.4)

c0∥∇ψδ∥2L2(Ω) ≤
∫
Ω

µ|∇ψδ|2 = i

∫
Ω

ω−2δH̃δ · ∇ψδ .

The Cauchy-Schwarz inequality and the normalization ∥H̃δ∥L2(Ω) = 1 imply

c0∥∇ψδ∥2L2(Ω) ≤ δω−2∥H̃δ∥L2(Ω)∥∇ψδ∥L2(Ω) = δω−2∥∇ψδ∥L2(Ω) .

Dividing by ∥∇ψδ∥L2(Ω) if this term is different from zero, we find ∥∇ψδ∥L2(Ω) → 0
as δ → 0. This is the desired strong convergence of ∇ψδ.

The strong convergence of H̃Y
δ together with the strong convergence of∇ψδ implies

the strong convergence of H̃δ = H̃Y
δ + ∇ψδ in L2(Ω). This provides the desired

contradiction and concludes the proof. □

4. Compactness property

We include a proof for the compactness result in order to have this exposition self-
contained. The compactness has some relations with the div-curl lemma, sometimes
called compensated compactness. Knowledge on the curl and on the divergence of a
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function somehow controls all derivatives. Loosely speaking, this property is already
suggested by the relation ∆ = − curl curl+∇ div.

Proposition 4.1 (Compactness when rotation and divergence are bounded in L2).
Let Ω ⊂ R3 be a bounded Lipschitz domain, let uj ∈ L2(Ω,C3) be a sequence such
that the distributional curl and the distributional divergence are bounded in L2,

curluj =: fj ∈ L2(Ω,C3) bounded,(4.1)

div uj =: gj ∈ L2(Ω,C) bounded.(4.2)

Furthermore, we demand vanishing normal boundary values of uj by imposing
∫
Ω
uj ·

∇φ = −
∫
Ω
gj φ for all φ ∈ H1(Ω,C). Then, there exists a subsequence j → ∞ and

a limit function u ∈ L2(Ω,C3) such that uj → u in L2(Ω,C3) along this subsequence.

Proof. We first prove the Proposition in Steps 1 to 3 under the assumption that Ω
is simply connected. The assumption of simple connectedness is removed in Step 4.
The bounded set Ω is contained in a large ball. For a radius R > 0 we start our
proof with Ω ⊂ Ω̃ := BR(0) ⊂ R3. Later on, we will choose a smaller open bounded
set Ω̃ ⊂ R3.

Step 1: A vector potential for fj. The divergence of uj is trivially extended, we

define g̃j ∈ L2(Ω̃) as g̃j|Ω = gj and g̃j|Ω = 0 in Ω̃ \ Ω. The extension f̃j of fj (with

vanishing divergence in Ω) is chosen such that div f̃j vanishes in Ω̃; we use here

Lemma 4.2 and choose a smaller set Ω̃ containing Ω, if necessary.
As a function with vanishing divergence, f̃j can be written with a vector potential

w̃j ∈ L2(Ω̃,C3) on the larger domain Ω̃,

(4.3) f̃j = curl w̃j .

The existence of such a vector potential is classical theory, w̃j can be constructed

with the help of path integrals over the components of f̃j, see [2] and [6] for modern
references.

Step 2: Modification of the vector potential w̃j. We want to modify the vector
potential such that it is divergence-free. We find such a modified potential in the
form W̃j = w̃j −∇ψ̃j where ψ̃j solves

∆ψ̃j = div w̃j

in Ω̃ (with homogeneous Dirichlet conditions on ∂Ω̃) so that div(W̃j) = 0. Since w̃j

is bounded in L2(Ω̃), we find ψ̃j bounded inH1(Ω̃). The result is a bounded sequence

W̃j ∈ L2(Ω̃,C3) with the (distributional) rotation f̃j and vanishing divergence. We

note that, because of ∆ = − curl curl+∇ div, the function W̃j ∈ H1(Ω̃,C3) satisfies,

in the sense of distributions, ∆W̃j = − curl f̃j ∈ H−1(Ω̃). The sequence W̃j is there-

fore locally of class H1. By possibly choosing a smaller open set Ω̃ (still containing
Ω), we achieve that the sequence W̃j ∈ H1(Ω̃) is bounded (Caccioppoli’s inequality).

The restriction Wj := W̃j|Ω has the rotation fj and vanishing divergence.

Since the sequence is bounded inH1(Ω̃,C3), there exists a subsequence with strong
convergence of W̃j in L

2(Ω̃,C3). We consider only this subsequence in the following.

Step 3: Construction of a scalar potential. We consider the function vj := uj −
Wj ∈ L2(Ω,R3) with vanishing rotation. Since Ω is simply connected, the function
has a scalar potential ϕj,

vj = ∇ϕj .
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We have therefore written the original sequence as uj = Wj + ∇ϕj. Since Wj

converges strongly, the lemma is proven when we show that ∇ϕj converges strongly
in L2 along a subsequence.
With the normal vector ν on ∂Ω, the function ϕj is a solution of

∆ϕj = gj in Ω , ν · ∇ϕj = −ν ·Wj on ∂Ω ,

where we used ν · uj = 0 on the boundary. This must be understood in the weak
form: The potential ϕj is a solution of the problem

(4.4)

∫
Ω

∇ϕj · ∇φ = −
∫
Ω

gj φ+

∫
∂Ω

Wj φ

for every φ ∈ H1(Ω). To have uniqueness of solutions, we demand that the integral∫
Ω
ϕj = 0 and define H1

∗ (Ω) as the space of H1(Ω)-functions satisfying this condi-
tion. The integrability condition on gj and Wj is that the right-hand side of (4.4)
vanishes for constant functions φ. This condition is satisfied in our setting because
of divWj = 0 and the assumption on uj in the lemma.
The theorem of Lax–Milgram can be applied, the solution operator to this prob-

lem, T0 : (gj,Wj) 7→ ϕj, is a bounded linear operator T0 : (H
1(Ω))′×L2(∂Ω) → H1

∗ (Ω)
(we suppress here that the argument must satisfy the integrability condition).

Additionally, we have the compactness of the embedding L2(Ω) ⊂ (H1(Ω))′ and
the compactness of the trace operator H1(Ω) → L2(∂Ω). This shows that the so-
lution operator as a map T1 : L

2(Ω) × H1(Ω) → H1
∗ (Ω) is compact. Since gj and

Wj are bounded in the left spaces, we conclude that ϕj = T1(gj,Wj) has a conver-
gent subsequence in H1(Ω). This shows that ∇ϕj has a convergent subsequence in
L2(Ω,R3) and concludes the proof for simply connected domains.

Step 4: Removing the assumption of simple connectedness. Let now Ω be an
arbitrary bounded Lipschitz domain. We choose a finite family of simply connected
Lipschitz subdomains Ωk ⊂ Ω, k = 1, ..., K that cover Ω. We choose a subordinate
family of smooth cut-off functions ηk. The lemma is then applied in each subdomain
Ωk to the sequence ujηk. □

The task in the subsequent lemma is to extend the function F to a function F̃
such that the normal component of F̃ · ν has no jump on ∂Ω.

Lemma 4.2 (Extension with bounded divergence). Let Ω and Ω̃ be Lipschitz do-
mains in Rn with Ω ⊂ Ω̃. Let F ∈ L2(Ω,Rn) be a function with a distributional
divergence ρ = div(F ) ∈ L2(Ω,R). Then, there exists an extension F̃ ∈ L2(Ω̃,Rn)
such that the distributional divergence ρ̃ = div(F̃ ) satisfies ρ̃ ∈ L2(Ω̃,R). One can
choose F̃ such that the function ρ̃ coincides with the trivial extension of ρ in a
neighborhood of Ω.

Proof. Since the problem can be localized, it suffices to consider the case that Σ :=
Ω̃ \ Ω is a domain with the two boundary components Γ := ∂Ω̃ and ∂Ω.

We must construct F̃ on the exterior domain Σ. This proof uses an extension
operator for functions φ ∈ H1(Σ,R). We use the fact that there exists a bounded
extension operator E : H1(Σ,R) → H1(Ω̃,R) such that φ̂ := E(φ) satisfies φ̂|Σ = φ.

With the extension operator E we define p ∈ H1
Γ(Σ) as the solution of

(4.5)

∫
Σ

∇p · ∇φ = −
∫
Ω

F · ∇E(φ)−
∫
Ω

ρ E(φ)
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for all φ ∈ H1
Γ(Σ), where H

1
Γ(Σ) is the space of H

1-functions on Σ that vanish on Γ.
This problem can be solved with p ∈ H1

Γ(Σ) with the lemma of Lax–Milgram since
the right-hand side defines a continuous linear form on H1

Γ(Σ). We set

F̃ (x) :=

{
F (x) for x ∈ Ω ,

∇p(x) for x ∈ Σ .

It remains to calculate the divergence of F̃ in Ω̃. For an arbitrary test-function
ψ̃ ∈ H1(Ω̃) and its restriction ψ := ψ̃|Σ ∈ H1(Σ) we calculate∫

Ω̃

F̃ · ∇ψ̃ =

∫
Ω

F · ∇ψ̃ +

∫
Σ

∇p · ∇ψ

(4.5)
=

∫
Ω

F · ∇ψ̃ −
∫
Ω

F · ∇E(ψ)−
∫
Ω

ρ E(ψ)

=

∫
Ω

F · ∇[ψ̃ − E(ψ)]−
∫
Ω

ρ E(ψ)

= −
∫
Ω

ρ [ψ̃ − E(ψ)]−
∫
Ω

ρ E(ψ) = −
∫
Ω

ρ ψ̃ .

This verifies that the divergence of F̃ coincides with the trivial extension of ρ. □
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