Lecture notes:

Existence result for Maxwell's equations on bounded Lipschitz domains

B. Schweizer¹, D. Wiedemann¹

18. November 2024

Abstract: We give a proof for the existence of weak solutions to timeharmonic Maxwell's equations on bounded Lipschitz domains. This result is well-known; our aim here is to present, in a concise way, the arguments that lead from a compactness result for divergence free functions and a Helmholtz decomposition to the existence result.

1. INTRODUCTION

In this note, we study time-harmonic Maxwell's equations. Given is a bounded domain $\Omega \subset \mathbb{R}^3$, two coefficient functions $\varepsilon \in L^\infty(\Omega,\mathbb{R})$ and $\mu \in L^\infty(\Omega,\mathbb{R})$, a frequency $\omega > 0$ and right-hand sides $f_h, f_e \colon \Omega \to \mathbb{C}^3$. We seek for functions $E, H \colon \Omega \to \mathbb{C}^3$ that satisfy

(1.1a)
$$
\operatorname{curl} E = i\omega\mu H + f_h \qquad \text{in } \Omega,
$$

(1.1b)
$$
\operatorname{curl} H = -i\omega\varepsilon E + f_e \qquad \text{in } \Omega,
$$

with a homogeneous tangential boundary condition for E,

(1.1c) E × ν = 0 on ∂Ω ,

where ν is the exterior normal vector on $\partial\Omega$. The boundary condition [\(1.1c\)](#page-0-0) is understood as $E \in H_0(\text{curl}, \Omega)$. The weak solution concept and the spaces $H_0(\text{curl}, \Omega)$ and $H(\text{curl}, \Omega)$ are defined below in (1.2) – (1.4) .

1.1. Main result. We present and prove a result on the existence of solutions to the Maxwell system (1.1) . We will actually provide two different proofs, one with Fredholm operator theory, one with a limiting absorption principle. We emphasize that the result is classical, [\[3\]](#page-8-0) is one of the more recent references. Our aim here is to present a short derivation.

Theorem 1.1 (Existence and uniqueness). Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain and $\omega > 0$ be a frequency. Let $\varepsilon \in L^{\infty}(\Omega,\mathbb{R})$ and $\mu \in L^{\infty}(\Omega,\mathbb{R})$ be coefficient functions such that, for some $c_0 > 0$, there holds $\varepsilon \geq c_0$ and $\mu \geq c_0$. We assume that system [\(1.1\)](#page-0-1) with $f_h = 0$ and $f_e = 0$ has only the trivial solution.

Then, for every $f_h, f_e \in L^2(\Omega, \mathbb{C}^3)$, system [\(1.1\)](#page-0-1) has a unique weak solution $(E, H) \in H_0(\text{curl}, \Omega) \times H(\text{curl}, \Omega).$

We note that the uniqueness follows immediately from the linearity of the Maxwell system and the assumption of uniqueness for $f_h = f_e = 0$.

¹Technische Universität Dortmund, Fakultät für Mathematik, Vogelspothsweg 87, D-44227 Dortmund, ben.schweizer@tu-dortmund.de, david.wiedemann@tu-dortmund.de

In order to keep this exposition as simple as possible, we assume $\text{div}(f_h) = 0$ in Ω and $f_h \cdot \nu = 0$ on $\partial \Omega$. This is understood in the weak sense, $\int_{\Omega} f_h \cdot \nabla \psi = 0$ for every $\psi \in H^1(\Omega)$. With the help of the Helmholtz decomposition, it can be shown that this assumption is not a loss of generality.

1.2. Weak form. To formulate (1.1) in a weak sense, we use the space of L^2 functions such that the distributional curl of the function is again of class L^2 . More precisely, we use

(1.2)
$$
H(\text{curl}, \Omega) \coloneqq \left\{ u \in L^2(\Omega, \mathbb{C}^3) \mid \text{curl } u \in L^2(\Omega, \mathbb{C}^3) \right\}.
$$

This is a Hilbert space with the norm $||u||_{H(\text{curl},\Omega)}^2 := \int_{\Omega} {||u|^2 + |\text{curl }u|^2}$ and the scalar product $\langle u, \varphi \rangle := \langle u, \varphi \rangle_{L^2(\Omega)} + \langle \text{curl } u, \text{curl } \varphi \rangle_{L^2(\Omega)}$.

Let us motivate a weak formulation of the Maxwell system. We choose $\phi \in$ H(curl, Ω) arbitrarily and use ε^{-1} curl ϕ as a test-function for [\(1.1b\)](#page-0-2). On the righthand side occurs an integral over $E \cdot \text{curl } \phi$, which is identical to the integral over curl $E \cdot \phi$ because of the boundary condition [\(1.1c\)](#page-0-0). Replacing curl E with the expression of $(1.1a)$, we find

$$
(1.3)\quad \int_{\Omega} \left\{ \varepsilon^{-1} \operatorname{curl} H \cdot \operatorname{curl} \phi - \omega^2 \mu H \cdot \phi \right\} = \int_{\Omega} \left\{ -i\omega f_h \cdot \phi + \varepsilon^{-1} f_e \cdot \operatorname{curl} \phi \right\} \quad \forall \phi,
$$

where the test-functions are all $\phi \in H(\text{curl}, \Omega)$. We choose [\(1.3\)](#page-1-2) as the weak form of system (1.1) .

Note that, once a solution H of (1.3) is found, E can be defined with formula $(1.1b)$ and the pair (E, H) solves the coupled system. The tangential boundary condition $E \times \nu = 0$ on $\partial\Omega$ is satisfied in the form $E \in H_0(\text{curl}, \Omega)$, where (1.4)

$$
H_0(\text{curl}, \Omega) := \left\{ u \in H(\text{curl}, \Omega) \middle| \int_{\Omega} \text{curl } u \cdot \eta = \int_{\Omega} u \cdot \text{curl } \eta \quad \forall \eta \in H(\text{curl}, \Omega) \right\}.
$$

Our aim is to prove Theorem [1.1](#page-0-4) with the help of the compactness result of Lemma [1.2](#page-1-3) and with the Helmholtz decomposition of Lemma [1.3.](#page-2-0)

1.3. Tool I: Compactness. The following lemma is classical in the theory of spaces of functions with curl in L^2 .

Lemma 1.2 (Compactness). Let Ω be a bounded Lipschitz domain and let $\mu \in$ $L^{\infty}(\Omega)$ be bounded below by some positive constant. Then the space

(1.5)
$$
Y \coloneqq \left\{ u \in H(\text{curl}, \Omega) \middle| \int_{\Omega} \mu u \cdot \nabla \psi = 0 \text{ for all } \psi \in H^{1}(\Omega) \right\}
$$

is compactly imbedded in $L^2(\Omega, \mathbb{C}^3)$.

Only standard methods are necessary to prove Theorem [1.1.](#page-0-4) In order to make that clear, we give a proof in Section [4.](#page-5-0) Proposition [4.1](#page-6-0) in Section [4](#page-5-0) is even more general in the sense that only the L^2 -control of the divergence of μu is demanded (and not that the divergence vanishes).

Comments on the literature regarding Lemma [1.2.](#page-1-3) The lemma is stated in [\[4,](#page-8-1) Lemma A.1] with our assumption on the coefficient. A very similar version is [\[3,](#page-8-0) Corollary 4.36], where positive definite symmetric matrix valued coefficients $\mu \in$ $L^{\infty}(\Omega, \mathbb{C}^{3\times3})$ are allowed. We remark that closely related results are also stated and proved for the subset of $H_0(\text{curl}, \Omega)$ in [\[3,](#page-8-0) Theorem 4.24] and [\[5,](#page-8-2) Theorem 4.7], the latter with additional regularity assumptions on the coefficient.

1.4. Tool II: Helmholtz decomposition. The space Y of (1.5) is complemented with the space of gradients,

(1.6)
$$
G := \left\{ u \in H(\text{curl}, \Omega) \, | \, \exists \psi \in H^{1}(\Omega) : u = \nabla \psi \right\}.
$$

The choice is such that Y is orthogonal to G in the space $L^2(\Omega, \mathbb{C}^3)$ with the weighted scalar product $\langle u, v \rangle = \int_{\Omega} \mu u \cdot \overline{v}$. Furthermore, since the (distributional) curl of a gradient always vanishes, curl($\nabla \psi$) = 0, the two subspaces are also orthogonal in $X \coloneqq H(\text{curl}, \Omega)$ with the scalar product $\langle u, v \rangle_X \coloneqq \int_{\Omega} \{ \mu u \cdot \overline{v} + \text{curl } u \cdot \text{curl } \overline{v} \}.$ By construction, Y is the $\langle .,.\rangle_X$ -orthogonal complement of G, we may write this as $Y = G^{\perp}$. We therefore have the following result:

Lemma 1.3 (Helmholtz decomposition). The space $X := H(\text{curl}, \Omega)$ has the orthogonal decomposition $X = Y \oplus G$. In particular, an arbitrary element $u \in X$ can be written uniquely as $u = v + \nabla \psi$ with $v \in Y$ and $\psi \in H^1(\Omega)$.

2. Existence proof with Fredholm operator theory

In our first existence proof, we re-formulate problem (1.3) with the Helmholtz decomposition. We seek solutions H of (1.3) in the space Y of (1.5) . We recall that the condition $H \in Y$ encodes that the divergence of μH vanishes and that $H \cdot \nu$ vanishes along the boundary.

Lemma 2.1 (Equivalent formulation in Y). The Maxwell system in the form (1.3) is equivalent to: Find $H \in Y$ with (2.1)

$$
\int_{\Omega} \left\{ \varepsilon^{-1} \operatorname{curl} H \cdot \operatorname{curl} \varphi - \omega^2 \mu H \cdot \varphi \right\} = \int_{\Omega} \left\{ -i \omega f_h \cdot \varphi + \varepsilon^{-1} f_e \cdot \operatorname{curl} \varphi \right\} \quad \forall \varphi \in Y.
$$

Proof. Let H be a solution of [\(1.3\)](#page-1-2). For arbitrary $\psi \in H^1(\Omega, \mathbb{R})$, we define $\varphi = \nabla \psi$; because of the distributional equality curl $\nabla \psi = 0$, there holds $\varphi \in H(\text{curl}, \Omega)$. Using φ as a test-function in [\(1.3\)](#page-1-2), we note that all terms except for $\int_{\Omega} \omega^2 \mu H \cdot \varphi$ vanish because of curl $\varphi = 0$ and $\int_{\Omega} f_h \cdot \nabla \psi = 0$ for $\psi \in H^1(\Omega)$. The result is that μH is orthogonal to gradients, i.e., $H \in Y$. Since the space of test-functions is smaller in (2.1) than in (1.3) , this implies that (2.1) holds.

Vice versa, let H be a solution of [\(2.1\)](#page-2-1). Given an arbitrary test-function $\phi \in$ $X = H(\text{curl}, \Omega)$, we write $\phi = \varphi + \nabla \psi$ with $\varphi \in Y$ and $\psi \in H^1(\Omega)$, see Lemma [1.3.](#page-2-0) We use that (1.3) is linear in ϕ , we can treat all contributions separately. Inserting $\nabla \psi$ in [\(1.3\)](#page-1-2), arguing as above and exploiting $H \in Y$, we find that all terms vanish. Inserting φ , the equality holds because of [\(2.1\)](#page-2-1). This shows that [\(1.3\)](#page-1-2) is satisfied for the test-function ϕ . Since ϕ was arbitrary, H is a solution of [\(1.3\)](#page-1-2).

The re-formulation (2.1) is useful since Lemma [1.2](#page-1-3) provides compactness of Y.

Proof of Theorem [1.1](#page-0-4) with Fredholm operators. On Y, we define sesquilinear forms $a, b: Y \times Y \to \mathbb{C}$ and a linear right-hand side $f: Y \to \mathbb{C}$ by setting, for every $u, \phi \in Y$,

$$
a(u, \phi) := \int_{\Omega} \left\{ u \cdot \overline{\phi} + \varepsilon^{-1} \operatorname{curl} u \cdot \operatorname{curl} \overline{\phi} \right\},
$$

$$
b(u, \phi) := \int_{\Omega} \left\{ u \cdot \overline{\phi} + \omega^2 \mu u \cdot \overline{\phi} \right\}, \quad f(\phi) := \int_{\Omega} \left\{ -i\omega f_h \cdot \overline{\phi} + \varepsilon^{-1} f_e \cdot \operatorname{curl} \overline{\phi} \right\}.
$$

Lemma [2.1](#page-2-2) yields: The Maxwell system [\(1.3\)](#page-1-2) is equivalent to: Find $H \in Y$ with

(2.2)
$$
a(H,\varphi) - b(H,\varphi) = f(\varphi) \quad \forall \varphi \in Y.
$$

This is the equation that we have to solve.

The sesquilinear form a defines a map $A: Y \to Y'$ from Y into the dual space Y' by $Au = a(u, \cdot)$. By definition of the scalar product in $Y \subset X = H(\text{curl}, \Omega)$, the form a is coercive on Y. The Lemma of Lax–Milgram implies that $A: Y \to Y'$ is invertible.

We now exploit that the embedding $\iota: Y \to L^2(\Omega, \mathbb{C}^3)$ is compact, see Lemma [1.2.](#page-1-3) The multiplication map $B: u \mapsto (1+\omega^2\mu) u$ corresponding to b is linear and bounded as a map $B: L^2(\Omega, \mathbb{C}^3) \to L^2(\Omega, \mathbb{C}^3)$. We denote the concatenation with an embedding into Y' with the same letter, $B: L^2(\Omega, \mathbb{C}^3) \to Y'.$

The field $H \in Y$ solves (2.2) if and only if

$$
AH - (B \circ \iota) H = f \qquad \text{in } Y'.
$$

Applying A^{-1} , we find the equivalent relation

$$
(\mathrm{id} - A^{-1} \circ B \circ \iota)H = A^{-1}f \qquad \text{in } Y.
$$

The operator $A^{-1} \circ B \circ \iota$ is compact, since ι is compact and the other operators are continuous. This implies that the operator $F := id - A^{-1} \circ B \circ \iota$ is a Fredholm operator of index zero, see [\[1,](#page-8-3) Theorem 11.8].

One assumption in Theorem [1.1](#page-0-4) is that the homogeneous system has only the trivial solution. Since all our re-formulations of the Maxwell system are equivalent, this implies that $F = id - A^{-1} \circ B \circ \iota$ is injective. Since the index is zero, the injectivity implies the surjectivity. Surjectivity of F implies that for every righthand side there exists a solution of (2.2) . Since the formulations are equivalent, we have also found a solution of (1.1) (1.1) (1.1) and Theorem 1.1 is proved \Box

3. Existence proof with a limiting absorption principle

In this section, we prove Theorem [1.1](#page-0-4) with a limiting absorption principle. A limiting absorption principle considers the equation with a damping term, which is sent to zero. In this text, we use a small constant $\delta > 0$ and replace the pre-factor $ω²μ$ in equation [\(1.3\)](#page-1-2) by $ω²μ - iδ$. This equation has a solution $H_δ$. We find a limit $H = \lim_{\delta \to 0} H_{\delta}$, which is a solution of [\(1.3\)](#page-1-2).

In the first step, we seek a solution
$$
H_{\delta} \in H(\text{curl}, \Omega)
$$
 of
\n(3.1)
\n
$$
\int_{\Omega} {\varepsilon^{-1} \operatorname{curl} H_{\delta} \cdot \operatorname{curl} \phi - (\omega^2 \mu - i \delta) H_{\delta} \cdot \phi} = \int_{\Omega} {-i\omega f_h \cdot \phi + \varepsilon^{-1} f_e \cdot \operatorname{curl} \phi} \quad \forall \phi,
$$

where the test-functions are arbitrary functions $\phi \in H(\text{curl}, \Omega)$.

Proof of Theorem [1.1](#page-0-4) with limiting absorption. Lemma [3.1](#page-4-0) provides a unique solution H_δ of [\(3.1\)](#page-3-1). Lemma [3.2](#page-4-1) shows that the sequence H_δ is bounded in $H(\text{curl}, \Omega)$ (in the setting of Theorem [1.1,](#page-0-4) where it is assumed that (1.3) has only the trivial solution for $f_h = f_e = 0$). Since $H(\text{curl}, \Omega)$ is reflexive, there exists a subsequence of H_{δ} , which converges weakly to some limit $H \in H(\text{curl}, \Omega)$. The weak convergence allows us to perform the limit $\delta \to 0$ in [\(3.1\)](#page-3-1) along the subsequence. We obtain that H solves (1.3) .

Lemma 3.1 (Existence of a solution for the problem with absorption). Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain and $\omega \in \mathbb{R} \setminus \{0\}$ a frequency. Let $\varepsilon \in L^{\infty}(\Omega, \mathbb{R})$ and $\mu \in L^{\infty}(\Omega,\mathbb{R})$ be coefficient functions such that, for some $c_0 > 0$, there holds $\varepsilon \geq c_0$ and $\mu > c_0$. Then there exists $\delta_0 > 0$ such that, for every $\delta \in (0, \delta_0)$, equation [\(3.1\)](#page-3-1) has a unique weak solution $H_{\delta} \in H(\text{curl}, \Omega)$.

Proof. We define the bilinear form a_{δ} on $H(\text{curl}, \Omega)$ by setting, for $u, \varphi \in H(\text{curl}, \Omega)$,

$$
a_{\delta}(u,\varphi) \coloneqq \int_{\Omega} \left\{ \varepsilon^{-1} \operatorname{curl} u \cdot \operatorname{curl} \overline{\varphi} + (i\delta - \omega^2 \mu) u \cdot \overline{\varphi} \right\} .
$$

The form a_{δ} allows us to rewrite (3.1) as

(3.2)
$$
a_{\delta}(H_{\delta}, \phi) = \int_{\Omega} \left\{ -i\omega f_{h} \cdot \overline{\phi} + \varepsilon^{-1} f_{e} \cdot \operatorname{curl} \overline{\phi} \right\} \quad \forall \phi \in H(\operatorname{curl}, \Omega).
$$

We calculate, for arbitrary $u \in H(\text{curl}, \Omega)$,

Im
$$
a_{\delta}(u, u) = \delta ||u||_{L^2(\Omega)}^2
$$
,
\nRe $a_{\delta}(u, u) \ge \operatorname{ess} \operatorname{sup}(\varepsilon)^{-1} || \operatorname{curl} u||_{L^2(\Omega)}^2 - \omega^2 \operatorname{ess} \operatorname{sup}(\mu) ||u||_{L^2(\Omega)}^2$.

We observe the following fact in $\mathbb{R}^2 \equiv \mathbb{C}$: For every vector $x = (x_1, x_2) \in \mathbb{R}^2$ and every $s \in [0,1]$, there holds $|x| \ge \max\{|x_1|, |x_2|\} \ge (1-s)|x_1| + s|x_2|$. This inequality allows to calculate, with $s = \delta^2$,

$$
|a_{\delta}(u,u)| \ge (1-\delta^2) \operatorname{Im} a_{\delta}(u,u) + \delta^2 \operatorname{Re} a_{\delta}(u,u)
$$

$$
\ge (1-\delta^2)\delta \|u\|_{L^2(\Omega)}^2 + \delta^2 \left(\operatorname{ess} \operatorname{sup}(\varepsilon)^{-1} \| \operatorname{curl} u \|_{L^2(\Omega)}^2 - \omega^2 \operatorname{ess} \operatorname{sup}(\mu) \|u\|_{L^2(\Omega)}^2 \right).
$$

Choosing $\delta_0 > 0$ small, we achieve $(1 - \delta^2)\delta \geq 2\delta^2\omega^2$ ess sup (μ) for all $\delta < \delta_0$, and obtain that a_{δ} is coercive. Problem [\(3.2\)](#page-4-2) for H_{δ} can therefore be solved with the Lemma of Lax–Milgram. □

Lemma 3.2 (Boundedness of solutions to the problem with absorption). Let the assumptions of Lemma [3.1](#page-4-0) be satisfied. For a sequence $\delta \to 0$, let $H_{\delta} \in H(\text{curl}, \Omega)$ be the corresponding sequence of solutions of [\(3.1\)](#page-3-1). Suppose that [\(1.3\)](#page-1-2) for $f_h = f_e = 0$ has only the trivial solution $H = 0$. Then, H_{δ} is bounded in $H(\text{curl}, \Omega)$.

Proof. Step 1: Preparation. For a contradiction argument, we assume that there exists a subsequence H_δ such that $||H_\delta||_{H(\text{curl},\Omega)} \to \infty$. We use H_δ as a test-function in [\(3.2\)](#page-4-2) and use the upper bound $C_{\varepsilon} \coloneqq \operatorname{ess} \operatorname{sup}(\varepsilon)$ to obtain

$$
C_{\varepsilon}^{-1} \|\operatorname{curl} H_{\delta}\|_{L^{2}(\Omega)}^{2} \leq \int_{\Omega} \varepsilon^{-1} \operatorname{curl} H_{\delta} \cdot \operatorname{curl} \overline{H}_{\delta}
$$

=
$$
\int_{\Omega} -(i\delta - \omega^{2}\mu)H_{\delta} \cdot \overline{H_{\delta}} + \int_{\Omega} \{-i\omega f_{h} \cdot \overline{H_{\delta}} + \varepsilon^{-1} f_{e} \cdot \operatorname{curl} \overline{H_{\delta}} \}.
$$

For arbitrary $\lambda > 0$, we continue this calculation with Young's inequality and find

$$
C_{\varepsilon}^{-1} \|\operatorname{curl} H_{\delta}\|_{L^{2}(\Omega)}^{2} \leq C \|H_{\delta}\|_{L^{2}(\Omega)}^{2} + C_{\lambda} + \lambda \|\operatorname{curl} H_{\delta}\|_{L^{2}(\Omega)}^{2},
$$

for some C depending on ω , f_h and μ , and C_λ depending on ε , f_e and λ . Choosing $\lambda = C_{\varepsilon}^{-1}/2$ and subtracting the term $\lambda \| \text{curl } H_{\delta} \|_{L^2(\Omega)}^2$ on both sides, we find, for some constant C, the inequality $|| \operatorname{curl} H_\delta ||_{L^2(\Omega)}^2 \leq C \left(1 + ||H_\delta||_{L^2(\Omega)}^2 \right)$.

In particular: The divergence $||H_\delta||_{H(\text{curl},\Omega)} \to \infty$ implies $||H_\delta||_{L^2(\Omega)} \to \infty$.

Step 2: Normalization. We normalize the sequence H_{δ} and consider the new sequence $\tilde{H}_{\delta} \coloneqq H_{\delta}/\Vert H_{\delta}\Vert_{L^{2}(\Omega,\mathbb{C}^{3})}$. This sequence satisfies

$$
(3.3) \quad a_{\delta}(\tilde{H}_{\delta}, \phi) = ||H_{\delta}||_{L^{2}(\Omega, \mathbb{C}^{3})} \int_{\Omega} \left\{-i\omega f_{h} \cdot \overline{\phi} + \varepsilon^{-1} f_{e} \cdot \operatorname{curl} \overline{\phi}\right\} \quad \forall \phi \in H(\operatorname{curl}, \Omega).
$$

The result of Step 1 together with $\|\tilde{H}_{\delta}\|_{L^2(\Omega,\mathbb{C}^3)} = 1$ shows that $\|\operatorname{curl} \tilde{H}_{\delta}\|_{L^2(\Omega)}^2$ is bounded.

Since $H(\text{curl}, \Omega)$ is reflexive, there exists a subsequence of H_{δ} , which converges weakly to some limit $\tilde{H} \in H(\text{curl}, \Omega)$, in particular $\tilde{H}_{\delta} \rightharpoonup \tilde{H}$ in $L^2(\Omega)$ and curl $\tilde{H}_{\delta} \rightharpoonup$ curl \tilde{H} in $L^2(\Omega)$. The weak convergence allows us to perform the limit $\delta \to 0$ in [\(3.3\)](#page-5-1) along the subsequence. We obtain that the limit \tilde{H} solves [\(1.3\)](#page-1-2) for $f_h = f_e = 0$. Our assumption was that there is no non-trivial solution to the homogeneous problem; this implies $H = 0$.

Step 3: Strong convergence. In this step we show the strong convergence of \tilde{H}_{δ} in $L^2(\Omega,\mathbb{C}^3)$ along a subsequence. Once this is obtained, we have the desired contradiction: $\|\tilde{H}_{\delta}\|_{L^{2}(\Omega)} = 1$ is in conflict with the strong convergence $\tilde{H}_{\delta} \to \tilde{H} = 0$.

In order to show the strong convergence, we decompose H_{δ} by means of the Helmholtz decomposition of Lemma [1.3:](#page-2-0) $\tilde{H}_{\delta} = \tilde{H}_{\delta}^Y + \nabla \psi_{\delta}$ for $\tilde{H}_{\delta}^Y \in Y$ and $\psi_{\delta} \in$ $H^1(\Omega)$. The compactness of Y shown in Lemma [1.2](#page-1-3) allows us to pass to a subsequence such that \tilde{H}_{δ}^{Y} converges strongly in $L^{2}(\Omega, \mathbb{C}^{3})$.

Let us use the test-function $\phi = \nabla \overline{\psi_{\delta}}$ in [\(3.1\)](#page-3-1). Since the curl of a gradient vanishes and since we assumed that f_h is orthogonal to gradients, we obtain

$$
\int_{\Omega} (\mu - i \omega^{-2} \delta) \tilde{H}_{\delta} \cdot \nabla \overline{\psi_{\delta}} = 0.
$$

Inserting the decomposition $\tilde{H}_{\delta} = \tilde{H}_{\delta}^{Y} + \nabla \psi_{\delta}$, we find

(3.4)
$$
i \int_{\Omega} \omega^{-2} \delta \tilde{H}_{\delta} \cdot \nabla \overline{\psi_{\delta}} - \int_{\Omega} \mu |\nabla \psi_{\delta}|^{2} = \int_{\Omega} \mu \tilde{H}_{\delta}^{Y} \cdot \nabla \overline{\psi_{\delta}} = 0,
$$

where we used the property $\tilde{H}_{\delta}^Y \in Y$ in the last equality. The lower bound $\mu \ge c_0 > 0$ allows us to obtain from [\(3.4\)](#page-5-2)

$$
c_0 \|\nabla \psi_\delta\|_{L^2(\Omega)}^2 \leq \int_{\Omega} \mu |\nabla \psi_\delta|^2 = i \int_{\Omega} \omega^{-2} \delta \tilde{H}_\delta \cdot \nabla \overline{\psi_\delta}.
$$

The Cauchy-Schwarz inequality and the normalization $\|\tilde{H}_{\delta}\|_{L^{2}(\Omega)}=1$ imply

$$
c_0 \|\nabla \psi_\delta\|_{L^2(\Omega)}^2 \leq \delta \omega^{-2} \|\tilde{H}_\delta\|_{L^2(\Omega)} \|\nabla \psi_\delta\|_{L^2(\Omega)} = \delta \omega^{-2} \|\nabla \psi_\delta\|_{L^2(\Omega)}.
$$

Dividing by $\|\nabla \psi_\delta\|_{L^2(\Omega)}$ if this term is different from zero, we find $\|\nabla \psi_\delta\|_{L^2(\Omega)} \to 0$ as $\delta \to 0$. This is the desired strong convergence of $\nabla \psi_{\delta}$.

The strong convergence of \tilde{H}_{δ}^{Y} together with the strong convergence of $\nabla \psi_{\delta}$ implies the strong convergence of $\tilde{H}_{\delta} = \tilde{H}_{\delta}^Y + \nabla \psi_{\delta}$ in $L^2(\Omega)$. This provides the desired contradiction and concludes the proof. \Box

4. Compactness property

We include a proof for the compactness result in order to have this exposition selfcontained. The compactness has some relations with the div-curl lemma, sometimes called compensated compactness. Knowledge on the curl and on the divergence of a function somehow controls all derivatives. Loosely speaking, this property is already suggested by the relation $\Delta = - \text{curl curl} + \nabla \text{div}$.

Proposition 4.1 (Compactness when rotation and divergence are bounded in L^2). Let $\Omega \subset \mathbb{R}^3$ be a bounded Lipschitz domain, let $u_j \in L^2(\Omega, \mathbb{C}^3)$ be a sequence such that the distributional curl and the distributional divergence are bounded in L^2 ,

(4.1)
$$
\operatorname{curl} u_j =: f_j \in L^2(\Omega, \mathbb{C}^3) \; bounded,
$$

(4.2) $\text{div } u_j =: g_j \in L^2(\Omega, \mathbb{C}) \text{ bounded.}$

Furthermore, we demand vanishing normal boundary values of u_j by imposing $\int_{\Omega} u_j$. $\nabla \varphi = -\int_{\Omega} g_j \varphi$ for all $\varphi \in H^1(\Omega, \mathbb{C})$. Then, there exists a subsequence $j \to \infty$ and a limit function $u \in L^2(\Omega, \mathbb{C}^3)$ such that $u_j \to u$ in $L^2(\Omega, \mathbb{C}^3)$ along this subsequence.

Proof. We first prove the Proposition in Steps 1 to 3 under the assumption that Ω is simply connected. The assumption of simple connectedness is removed in Step 4. The bounded set Ω is contained in a large ball. For a radius $R > 0$ we start our proof with $\overline{\Omega} \subset \tilde{\Omega} := B_R(0) \subset \mathbb{R}^3$. Later on, we will choose a smaller open bounded set $\tilde{\Omega} \subset \mathbb{R}^3$.

Step 1: A vector potential for f_j . The divergence of u_j is trivially extended, we define $\tilde{g}_j \in L^2(\tilde{\Omega})$ as $\tilde{g}_j|_{\Omega} = g_j$ and $\tilde{g}_j|_{\Omega} = 0$ in $\tilde{\Omega} \setminus \Omega$. The extension \tilde{f}_j of f_j (with vanishing divergence in Ω) is chosen such that div f_i vanishes in Ω ; we use here Lemma [4.2](#page-7-0) and choose a smaller set $\tilde{\Omega}$ containing $\overline{\Omega}$, if necessary.

As a function with vanishing divergence, \tilde{f}_i can be written with a vector potential $\tilde{w}_j \in L^2(\tilde{\Omega}, \mathbb{C}^3)$ on the larger domain $\tilde{\Omega}$,

(4.3) ˜f^j = curl ˜w^j .

The existence of such a vector potential is classical theory, \tilde{w}_i can be constructed with the help of path integrals over the components of \tilde{f}_j , see [\[2\]](#page-8-4) and [\[6\]](#page-8-5) for modern references.

Step 2: Modification of the vector potential \tilde{w}_i . We want to modify the vector potential such that it is divergence-free. We find such a modified potential in the form $\tilde{W}_j = \tilde{w}_j - \nabla \tilde{\psi}_j$ where $\tilde{\psi}_j$ solves

$$
\Delta \tilde{\psi}_j = \text{div } \tilde{w}_j
$$

in $\tilde{\Omega}$ (with homogeneous Dirichlet conditions on $\partial \tilde{\Omega}$) so that $\text{div}(\tilde{W}_j) = 0$. Since \tilde{w}_j is bounded in $L^2(\tilde{\Omega})$, we find $\tilde{\psi}_j$ bounded in $H^1(\tilde{\Omega})$. The result is a bounded sequence $\tilde{W}_j \in L^2(\tilde{\Omega}, \mathbb{C}^3)$ with the (distributional) rotation \tilde{f}_j and vanishing divergence. We note that, because of $\Delta = -\text{ curl curl} + \nabla \text{ div}$, the function $\tilde{W}_j \in H^1(\tilde{\Omega}, \mathbb{C}^3)$ satisfies, in the sense of distributions, $\Delta \tilde{W}_j = - \operatorname{curl} \tilde{f}_j \in H^{-1}(\tilde{\Omega})$. The sequence \tilde{W}_j is therefore locally of class H^1 . By possibly choosing a smaller open set $\tilde{\Omega}$ (still containing $\overline{\Omega}$), we achieve that the sequence $\tilde{W}_j \in H^1(\tilde{\Omega})$ is bounded (Caccioppoli's inequality). The restriction $W_j := \tilde{W}_j|_{\Omega}$ has the rotation f_j and vanishing divergence.

Since the sequence is bounded in $H^1(\tilde{\Omega}, \mathbb{C}^3)$, there exists a subsequence with strong convergence of \tilde{W}_j in $L^2(\tilde{\Omega}, \mathbb{C}^3)$. We consider only this subsequence in the following.

Step 3: Construction of a scalar potential. We consider the function $v_j \coloneqq u_j W_j \in L^2(\Omega,\mathbb{R}^3)$ with vanishing rotation. Since Ω is simply connected, the function has a scalar potential ϕ_j ,

$$
v_j = \nabla \phi_j.
$$

We have therefore written the original sequence as $u_j = W_j + \nabla \phi_j$. Since W_j converges strongly, the lemma is proven when we show that $\nabla \phi_i$ converges strongly in L^2 along a subsequence.

With the normal vector ν on $\partial\Omega$, the function ϕ_j is a solution of

$$
\Delta \phi_j = g_j \text{ in } \Omega \,, \qquad \nu \cdot \nabla \phi_j = -\nu \cdot W_j \text{ on } \partial \Omega \,,
$$

where we used $\nu \cdot u_j = 0$ on the boundary. This must be understood in the weak form: The potential ϕ_j is a solution of the problem

(4.4)
$$
\int_{\Omega} \nabla \phi_j \cdot \nabla \varphi = -\int_{\Omega} g_j \varphi + \int_{\partial \Omega} W_j \varphi
$$

for every $\varphi \in H^1(\Omega)$. To have uniqueness of solutions, we demand that the integral $\int_{\Omega} \phi_j = 0$ and define $H^1_*(\Omega)$ as the space of $H^1(\Omega)$ -functions satisfying this condition. The integrability condition on g_j and W_j is that the right-hand side of [\(4.4\)](#page-7-1) vanishes for constant functions φ . This condition is satisfied in our setting because of div $W_j = 0$ and the assumption on u_j in the lemma.

The theorem of Lax–Milgram can be applied, the solution operator to this problem, $\mathcal{T}_0: (g_j, W_j) \mapsto \phi_j$, is a bounded linear operator $\mathcal{T}_0: (H^1(\Omega))' \times L^2(\partial \Omega) \to H^1_*(\Omega)$ (we suppress here that the argument must satisfy the integrability condition).

Additionally, we have the compactness of the embedding $L^2(\Omega) \subset (H^1(\Omega))'$ and the compactness of the trace operator $H^1(\Omega) \to L^2(\partial\Omega)$. This shows that the solution operator as a map $\mathcal{T}_1: L^2(\Omega) \times H^1(\Omega) \to H^1_*(\Omega)$ is compact. Since g_j and W_j are bounded in the left spaces, we conclude that $\phi_j = \mathcal{T}_1(g_j, W_j)$ has a convergent subsequence in $H^1(\Omega)$. This shows that $\nabla \phi_j$ has a convergent subsequence in $L^2(\Omega,\mathbb{R}^3)$ and concludes the proof for simply connected domains.

Step 4: Removing the assumption of simple connectedness. Let now Ω be an arbitrary bounded Lipschitz domain. We choose a finite family of simply connected Lipschitz subdomains $\Omega_k \subset \Omega$, $k = 1, ..., K$ that cover Ω . We choose a subordinate family of smooth cut-off functions η_k . The lemma is then applied in each subdomain Ω_k to the sequence $u_j \eta_k$.

The task in the subsequent lemma is to extend the function F to a function F such that the normal component of $F \cdot \nu$ has no jump on $\partial \Omega$.

Lemma 4.2 (Extension with bounded divergence). Let Ω and $\tilde{\Omega}$ be Lipschitz domains in \mathbb{R}^n with $\overline{\Omega} \subset \tilde{\Omega}$. Let $F \in L^2(\Omega, \mathbb{R}^n)$ be a function with a distributional divergence $\rho = \text{div}(F) \in L^2(\Omega, \mathbb{R})$. Then, there exists an extension $\tilde{F} \in L^2(\tilde{\Omega}, \mathbb{R}^n)$ such that the distributional divergence $\tilde{\rho} = \text{div}(\tilde{F})$ satisfies $\tilde{\rho} \in L^2(\tilde{\Omega}, \mathbb{R})$. One can choose \tilde{F} such that the function $\tilde{\rho}$ coincides with the trivial extension of ρ in a neighborhood of $\overline{\Omega}$.

Proof. Since the problem can be localized, it suffices to consider the case that Σ := $\Omega \setminus \overline{\Omega}$ is a domain with the two boundary components $\Gamma := \partial \Omega$ and $\partial \Omega$.

We must construct \tilde{F} on the exterior domain Σ . This proof uses an extension operator for functions $\varphi \in H^1(\Sigma, \mathbb{R})$. We use the fact that there exists a bounded extension operator $\mathcal{E}: H^1(\Sigma, \mathbb{R}) \to H^1(\tilde{\Omega}, \mathbb{R})$ such that $\hat{\varphi} := \mathcal{E}(\varphi)$ satisfies $\hat{\varphi}|_{\Sigma} = \varphi$.

With the extension operator \mathcal{E} we define $p \in H^1_{\Gamma}(\Sigma)$ as the solution of

(4.5)
$$
\int_{\Sigma} \nabla p \cdot \nabla \varphi = - \int_{\Omega} F \cdot \nabla \mathcal{E}(\varphi) - \int_{\Omega} \rho \mathcal{E}(\varphi)
$$

for all $\varphi \in H^1_{\Gamma}(\Sigma)$, where $H^1_{\Gamma}(\Sigma)$ is the space of H^1 -functions on Σ that vanish on Γ . This problem can be solved with $p \in H^1_{\Gamma}(\Sigma)$ with the lemma of Lax–Milgram since the right-hand side defines a continuous linear form on $H^1_{\Gamma}(\Sigma)$. We set

$$
\tilde{F}(x) := \begin{cases} F(x) & \text{for } x \in \Omega, \\ \nabla p(x) & \text{for } x \in \Sigma. \end{cases}
$$

It remains to calculate the divergence of \tilde{F} in $\tilde{\Omega}$. For an arbitrary test-function $\tilde{\psi} \in H^1(\tilde{\Omega})$ and its restriction $\psi \coloneqq \tilde{\psi}|_{\Sigma} \in H^1(\Sigma)$ we calculate

$$
\int_{\tilde{\Omega}} \tilde{F} \cdot \nabla \tilde{\psi} = \int_{\Omega} F \cdot \nabla \tilde{\psi} + \int_{\Sigma} \nabla p \cdot \nabla \psi
$$
\n
$$
\stackrel{(4.5)}{=} \int_{\Omega} F \cdot \nabla \tilde{\psi} - \int_{\Omega} F \cdot \nabla \mathcal{E}(\psi) - \int_{\Omega} \rho \mathcal{E}(\psi)
$$
\n
$$
= \int_{\Omega} F \cdot \nabla [\tilde{\psi} - \mathcal{E}(\psi)] - \int_{\Omega} \rho \mathcal{E}(\psi)
$$
\n
$$
= - \int_{\Omega} \rho [\tilde{\psi} - \mathcal{E}(\psi)] - \int_{\Omega} \rho \mathcal{E}(\psi) = - \int_{\Omega} \rho \tilde{\psi}.
$$

This verifies that the divergence of \tilde{F} coincides with the trivial extension of ρ . \Box

REFERENCES

- [1] H. W. Alt. Linear functional analysis. An application-oriented introduction. Universitext. Springer-Verlag London, Ltd., London, 2016. [https://doi.org/10.1007/](https://doi.org/10.1007/978-1-4471-7280-2) [978-1-4471-7280-2](https://doi.org/10.1007/978-1-4471-7280-2).
- [2] C. Amrouche, P. G. Ciarlet and P. Ciarlet, Jr. Weak vector and scalar potentials: applications to Poincaré's theorem and Korn's inequality in Sobolev spaces with negative exponents. Anal. Appl. (Singap.), 8(1):1–17, 2010. <https://doi.org/10.1142/S0219530510001497>.
- [3] A. Kirsch and F. Hettlich. The mathematical theory of time-harmonic Maxwell's equations. Expansion-, integral-, and variational methods, volume 190 of Applied Mathematical Sciences. Springer, Cham, 2015. <https://doi.org/10.1007/978-3-319-11086-8>.
- [4] A. Kirsch and B. Schweizer. Time harmonic Maxwell's equations in periodic waveguides. Technical report, 2024. [http://www.mathematik.tu-dortmund.de/lsi/schweizer/Preprints/](http://www.mathematik.tu-dortmund.de/lsi/schweizer/Preprints/Closed-WG-Maxwell-Revision.pdf) [Closed-WG-Maxwell-Revision.pdf](http://www.mathematik.tu-dortmund.de/lsi/schweizer/Preprints/Closed-WG-Maxwell-Revision.pdf).
- [5] P. Monk. Finite element methods for Maxwell's equations. Numerical Mathematics and Scientific Computation. Oxford University Press, New York, 2003. [https://doi.org/10.1093/](https://doi.org/10.1093/acprof:oso/9780198508885.001.0001) [acprof:oso/9780198508885.001.0001](https://doi.org/10.1093/acprof:oso/9780198508885.001.0001).
- [6] T. Schubert, B. Schweizer and D. Wiedemann. Kurzeinführung in die Vektoranalysis. Technical report, 2024. [https://analysis.mathematik.tu-dortmund.de/storages/](https://analysis.mathematik.tu-dortmund.de/storages/analysis-mathematik/r/dokumente/Kurzskripte/Kurzskript-Potentiale-20241010.pdf) [analysis-mathematik/r/dokumente/Kurzskripte/Kurzskript-Potentiale-20241010.](https://analysis.mathematik.tu-dortmund.de/storages/analysis-mathematik/r/dokumente/Kurzskripte/Kurzskript-Potentiale-20241010.pdf) [pdf](https://analysis.mathematik.tu-dortmund.de/storages/analysis-mathematik/r/dokumente/Kurzskripte/Kurzskript-Potentiale-20241010.pdf).