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1 Introduction

Let A = A(t) be a family of matrices, depending on a parameter t.
Question: How do the eigenvalues of A(t) depend on t?

This is the underlying question of what is called “perturbation theory”. It is a
fundamental question and it is of importance in many applications. F. Rellich made
fundamental contributions in the 1940ies, T. Kato then extended the theory and
published 1966 the first version of his 600 pages book, see [1]. Until today, this book
is the reference in this field of research. Kato’s theory is developed for the spectrum
of linear operators on general Hilbert spaces, but the most interesting properties
can already been explained in finite dimensional spaces.

Setting 1.1. Let (−δ, δ) ⊂ R with δ > 0 be a real interval, let d ∈ N be the
dimension. Let (−δ, δ) ∋ t 7→ A(t) ∈ Cd×d be a family of matrices. Let λ0 ∈ C be
an eigenvalue of A(0) with algebraic multiplicity m ∈ N.

With coefficients, a matrix can be written as A(t) = (aij(t))ij, we therefore
consider the situation that the entries of the matrix depend on t. The guiding
questions are: When the matrices A (that is: all coefficients aij) depend in an
analytic way on t, do there exist m branches t 7→ λk(t) of eigenvalues, k = 1, ...,m,
that continue λ0? Are these branches analytic in t?

The first question is not too hard: When A depends differentiable on t, then there
are m Lipschitz branches λk = λk(t) with λk(0) = λ0 and such that eigenfunctions
span an m-dimensional space. This is a well-known fact and we recall it below. The
second question is hard: Are the branches smooth?

We collect a number of examples that show: One has to be very careful! Inter-
esting things can happen. Nevertheless, when everything is done right, there is a
positive answer also to the second question.

We always assume that λ0 ∈ C is an eigenvalue of A(0) with the algebraic
multiplicity m ∈ N. Except for an introductory example, we will restrict ourselfs to
selfadjoint matrices. We recall that, when a matrix is selfadjoint, all eigenvalues are
real, eigenvectors to different eigenvectors are orhogonal (both facts follow with the
elementary calculation λ⟨v, w⟩ = ⟨λv, w⟩ = ⟨Av,w⟩ = ⟨v,Aw⟩ = ⟨v, µw⟩ = µ̄⟨v, w).
Furthermore, the geometric multiplicity coincides with the algebraic multiplicity, the
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matrix is diagonizable (as can be shown by reducing the problem to the orthogonal
complement of the eigenvectors that are already found; one eigenvector can always
be found by maximizing x 7→ ⟨Ax, x⟩ on spheres in Rd).

1.1 Operators on Hilbert spaces

When one is interested in operators on Hilbert spaces, then one reduces to a finite-
dimensional subspace of interest and applies the results for matrices (which are
discussed in this text). Along this path one can show that the results presented
here remain valid in the following situation, where Cω stands either for C1 or for
“analytic”.

Setting 1.2. Let X be a Hilbert space over C, let A = A(t) be a family of operators
A ∈ Cω((−δ, δ),L(X)) with the following two properties for every t: (i) A(t) : X →
X is selfadjoint. (ii) For every λ ̸= 0, the operator A(t)−λ id is a Fredholm operator
with index 0. One considers λ0 ̸= 0, an isolated eigenvalue of A(0).

Indeed, in the situation of Setting 1.2, there is a family of projections Π(t)
of class Cω, where Π(t) projects to the relevant m-dimensional subspace spanned
by eigenvectors corresponding to continuations of the eigenvalue λ0. The proof of
closely ralated facts can be found in [1]. A proof is presented on the 4 pages of a
(hopefully) well-accessible appendix in [3] (the appendix uses the ideas of Kato and
presents the proof for C1 dependence t 7→ A(t)).

1.2 Lipschitz extensions

We indicated that it is easy to find Lipschitz extensions of the eigenvalue. We will
use this fact which can be proved with complex analysis methods. This result is
classical and (of course) contained in [1]; it is actually also obtained on the 4 pages
of the appendix in [3].

Proposition 1.3 (Lipschitz branches for selfadjoint matrices). We consider Setting
1.1 with selfadjoint matrices A(t) of class C1, or the Setting 1.2. Then, for a possibly
reduced parameter δ > 0, there exist m Lipschitz continuous branches µ1, ..., µm :
(−δ, δ) → C with µk(0) = λ0 (we allow µk(t) = µℓ(t) for k ̸= ℓ) such that µk(t)
is an eigenvalue for A(t) for every t ∈ (−δ, δ) and every k ≤ m. Furthermore,
corresponding eigenvectors uk(t) can be chosen such that u1(t), ..., um(t) spans an
m-dimensional subspace. The projection Π(t) to this subspace is of class C1 in t.

When all matrices A(t) are selfadjoint, then all µk are real and we can order the
m branches such that, for every t, there holds µ1(t) ≤ ... ≤ µm(t). We will see below
that this is not necessarily a good ordering.

1.3 Simple eigenvalues

There is no problem at all when λ0 ∈ C is an algebraically simple eigenvalue of A(0).
Then the eigenvalue can be extended with (−δ, δ) ∋ t 7→ λ(t) ∈ C with λ(0) = λ0

and this map has the same smoothness as the coefficient functions. This can be
shown with the implicit function theorem.
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2 Examples with a lack of smooth dependence

In this section, we provide examples that show that one has to be very careful.

2.1 Non-selfadjoint matrix

Example 2.1 (Non-selfadjoint). Matrix and eigenvalues are given by

A(t) =

[
0 t
1 0

]
, λ1(t) =

√
t , λ2(t) = −

√
t . (2.1)

We have chosen here the standard complex root such that
√
t is the real square root

for t ≥ 0 and
√
t = i

√
−t for t < 0.

The coefficients are analytic in t, the eigenvalues are continuous in t, but they
are not Lipschitz continuous.

The example shows, in particular, that one cannot simply drop the assumption
of A(t) being self-adjoint in Proposition 1.3.

Kato’s example II, 5.9 adds another aspect and improves the finding: The exam-
ple there is a C∞ family of matrices (again, not selfadjoint), depending on a single
real parameter, such that the eigenvalues are not C1 (in any ordering). So far, this is
as in our example above. The interesting improvement of II, 5.9 is: For every t, the
matrix is diagonizable. We see from the example: The failure of smooth dependence
cannot be remedied by imposing, additionally, that the matrices are diagonizable.

We conclude: In the non-selfadjoint case, the behavior of eigenvalues is quite
bad. They are only Lipschitz or, under additional assumptions, differentiable; in
any case, the derivatives can be discontinuous. From now on, we therefore restrict
ourselfs to selfadjoint families of matrices.

2.2 Selfadjoint matrix with bad natural ordering

Example 2.2 (Selfadjoint, bad natural ordering). We consider

A(t) =

[
0 0
0 t

]
, λ1 = 0 , λ2 = t . (2.2)

Let µ1(t) and µ2(t) be the two ordered eigenvalues, which means here

µ1(t) =

{
t for t < 0

0 for t ≥ 0
µ2(t) =

{
0 for t < 0

t for t ≥ 0
(2.3)

Then t 7→ µ1(t) and t 7→ µ2(t) are both Lipschitz continuous, but not differentiable.

2.3 Excursion: Two parameters

In the next example, we use two real parameters, t and s. The characteristic poly-
nomial is (λ−s)(λ+s)−t2 = λ2−s2−t2, the roots are λ1,2 = ±

√
s2 + t2 = ±|(s, t)|,

we interpret here (s, t) ∈ R2 as a point in the two-dimensional space.
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Example 2.3 (Two parameters). Matrix and eigenvalues are given by

A(s, t) =

[
s t
t −s

]
, λ1,2 = ±|(s, t)| . (2.4)

When we try to achieve a smooth dependence on the parameters, we must choose the
eigenvalues constant on circles, e.g., λ1(s, t) = |(s, t)| and λ2(s, t) = −|(s, t)|. With
this choice, the map t 7→ λ1(0, t) = |t| is Lipschitz continuous, but not differentiable.

In Example 2.3, the coefficients are analytic in s and t, the eigenvalues are
Lipschitz continuous, but not C1. The example shows that no smooth dependence
can be expected when two (or more) parameters are considered. Accordingly, in the
following, we consider only the case with only one real parameter t ∈ R.

2.4 Selfadjoint matrix with non-smooth eigenvectors

We now present the most interesting and most famous examples. The first is going
back to Rellich, it appears on page 52 in [5] and as II, 5.3 in [1].

Example 2.4 (Selfadjoint, non-smooth eigenvectors). The matrices are

A(t) = e−1/t2
[
cos(2/t) sin(2/t)
sin(2/t) − cos(2/t)

]
(2.5)

for t ̸= 0, extended with A(0) = 0. Two eigenvectors for t ̸= 0 are(
cos(1/t)
sin(1/t)

)
and

(
sin(1/t)
cos(1/t)

)
, (2.6)

the corresponding eigenvalues are ±e−1/t2. One easily checks this fact with the for-
mulas cos(2x) = cos2(x)− sin2(x) and sin(2x) = 2 sin(x) cos(x).

The map t 7→ A(t) is of class C∞, the matrices are selfadjoint, but the eigenvectors
do not depend continuously on t.

In the above example, the eigenvectors are somehow “wildly spinning around”
in the plane as t ↘ 0. The example shows that one cannot expect smoothness of
the eigenvectors, not even Lipschitz-continuity.

We learned the following example from [2], it is a bit more accessible and shows
the same point. The eigenvectors are not behaving quite as wild.

Example 2.5 (Selfadjoint, non-smooth eigenvectors). We choose the two matrices

M+ =

[
0 1
1 0

]
, M− =

[
1 0
0 2

]
. (2.7)

These matrices are symmetric and have the property that the eigenvectors are dif-
ferent; one may choose (1, 1) and (1,−1) for M+ and (1, 0) and (0, 1) for M−.
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We consider a C∞-function g : R → R with g ≥ 0 and g(0) = 0, with all
derivatives of g vanishing in t = 0, and with g(t) ̸= 0 for t ̸= 0. The matrix family
of this example is given by

A(t) =

{
g(t)M+ for t ≥ 0

g(t)M− for t < 0 .
(2.8)

Since the eigenvectors are those of M+ for t > 0 and those of M− for t < 0, the
eigenvectors do not depend continuously on t.

Also in Example 2.5, the coefficients of A are C∞ in t, but the eigenvectors are
not even continuous.

3 Positive results: Smooth dependence

We have seen that we can expect a positive result only for eigenvalues and not for
eigenvectors (see Example 2.4 or Example 2.5), only for a single real parameter
(see Example 2.3), only for self-adjoint matrices (see Example 2.1), and only up to
ordering (see Example 2.2). But — when we take all these restrictions into account
— we find a positive answer. Some of the early formulations are: Page 39 of [5] and
Theorem II, 6.1 of [1].

Theorem 3.1 (Rellich). Let (−δ, δ) ∋ t 7→ A(t) ∈ Cd×d be an analytical family of
selfadjoint matrices, let λ0 ∈ C be an eigenvalue of A(0) with multiplicity m ∈ N.

Then, for a possibly reduced parameter δ > 0, there exist m analytic branches
λ1, ..., λm : (−δ, δ) → C (we allow λk(t) = λℓ(t) for k ̸= ℓ) such that λk(t) is an
eigenvalue for A(t) for every t ∈ (−δ, δ) and every k ≤ m. Furthermore, cor-
responding eigenvectors uk(t) can be chosen such that u1(t), ..., um(t) spans an m-
dimensional subspace of Cd.

The following remark describes another theorem of Rellich. It allows that the
dependence is only of class C1.

Remark 3.2 (Variation: C1-dependence). Theorem 3.1 remains valid with the fol-
lowing change: When the map t 7→ A(t) is only of class C1, there are m branches
t 7→ λk(t) of class C

1. See Theorem II, 6.8 of [1].

Can one also have a smooth family of the corresponding eigenvectors? Aston-
ishingly, the answer is positive in the case of analytic dependence.

Remark 3.3 (Smooth dependence of eigenvectors). In the setting of Theorem 3.1,
one can also choose orhonormal eigenvectors uk(t) that depend analytically on t. See
Theorem II, 6.1 of [1] and the comments in the subsequent section (starting on page
121).

Remarks 3.2 and 3.3 show that one really has to be very careful: Regarding the
eigenvalues, one can replace everywhere “analytic” by C1 and gets the same result.
For eigenvectors this is not the case, see Examples 2.4 and 2.5. In the light of these
two examples, Remark 3.3 is astonishing. It can be read as: Demanding analyticity
instead of C∞ makes constructions as in the two examples impossible.
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3.1 Help from algebra: Puiseux’s theorem

The proof of Theorem 3.1 is based on a result from algebra.

Theorem 3.4 (Newton-Puiseux). Let δ > 0 and n ∈ N be fixed and let U ⊂ C be
an open set containing the real interval [−δ, δ]. Let Φ : U ×C ∋ (t, λ) 7→ Φ(t, λ) ∈ C
be of the form

Φ(t, λ) = λn + φn−1(t)λ
n−1 + ...+ φ0(t) , (3.1)

where, for every k < n, the function φk : U → C is an analytic function. Then,
for some number r ∈ N, on a possibly smaller open set 0 ∈ U ′ ⊂ U , there exist n
analytic functions gk : U

′ → C such that

Φ(t, λ) = Πn
k=1(λ− gk(t

1/r)) . (3.2)

In particular, the n roots of Φ can be written as analytic functions in t1/r. Equation
(3.2) holds for every t ∈ U \ {z ∈ C | Re(z) ≤ 0 , Im(z) = 0} and for every λ ∈ C.

3.2 Rellich’s proof of analytic dependence

We can now give the proof for smooth dependence of eigenvalues. We present here
the proof that Rellich gives in his lecture notes [5], starting on page 37.

The essence of the proof is: The characteristic polynomial of A(t) is a polynomial
of the form (3.1). Algebra helps and we can conclude that the zeros of the polynomial
(which are the eigenvalues) depend analytically on t.

The proof is not that simple! The characteristic polynomial of (2.1) is λ2 − t,
the roots are ±

√
t, they are not smooth! In fact: Theorem 3.4 only yields that the

zeros of the polynomial depend analytically on complex roots of t, not necessarily
analytically on t.

We must exploit that A(t) is selfadjoint in order to conclude the proof.

Proof of Theorem 3.1. We study the characteristic polynomial Φ(t, λ) of the matrix
family, it is of the form (3.1) with analytical coefficients, there holds Φ(0, λ0) = 0.
By Theorem 3.4, we can write Φ as in (3.2). For fixed index k, we consider the
family of zeros λk(t) = gk(t

1/r). Because of gk(0) = λ0, we can write

λk(t) = λ0 + b1 t
1/r + b2 t

2/r + b3 t
3/r + ... (3.3)

where the series converges in a neighborhood of t = 0.
We note that λ0 and all λk(t) are real, since these are eigenvalues of a selfadoint

matrix. Considering only real and positive numbers t, we can conclude that all
coefficients bℓ must be real. This can be concluded with an induction argument.
We sketch this as follows: When b1 is real, then b2 is the limit of the real numbers
t−2/r

(
λk(t)− λ0 − b1 t

1/r
)
for t ↘ 0.

Let us assume that there is any index ℓ ∈ N, with a non-vanishing coefficient
bℓ ̸= 0, such that the corresponding exponent is non-integer, ℓ/r /∈ N. Under this
assumption, let ℓ be the smallest index with these properties. Then, for t real and
small in absolute value, the number

λ0 +

( ∑
j with jr<ℓ

bjr t
j

)
+ bℓ t

ℓ/r (3.4)
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is a good approximation to the real number λk(t) in the sense that

1

|t|ℓ/r

[
λk(t)− λ0 −

( ∑
j with jr<ℓ

bjr t
j

)
− bℓ t

ℓ/r

]
→ 0 (3.5)

as |t| → 0. In particular, the imaginary part of the left-hand side vanishes in the
limit. Only the last entry is non-real, therefore the imaginary part of the left-hand
side is simply Im(bℓ (t/|t|)ℓ/r). When we consider t > 0, this expression is just Im(bℓ)
and (3.5) yields Im(bℓ) = 0. When we consider t < 0, then (t/|t|)ℓ/r is not real and
we conclude from (3.5) that also Re(bℓ) vanishes. This is in contradiction to the
choice of ℓ.
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