Übungen zur Vorlesung

Höhere Mathematik I (P/ET/AI/MP/DS)

Wintersemester 2022/23

Prof. Dr. B. Schweizer

Tim Schubert

Aufgabe 7.1. [Gleichungssystem aus Skalar- und Vektorprodukt] Es sei $v = (2, 1, 3) \in \mathbb{R}^3$. Bestimmen Sie alle Vektoren $x \in \mathbb{R}^3$ die gleichzeitig die Bedingungen $x \times v = (2, -1, -1) \in \mathbb{R}^3$ und $\langle x, v \rangle = 6 \in \mathbb{R}$ erfüllen.

Aufgabe 7.2. [Ein polynomieller Vektorraum] Es sei

$$V := \{ f \mid f : \mathbb{R} \to \mathbb{R} \text{ und } f(x) = a_0 + a_2 x^2 + a_4 x^4, \ a_i \in \mathbb{R}, \ i = 0, 2, 4 \}.$$

Wir definieren auf V die Addition und die skalare Multiplikation wie im Raum der Abbildungen:

Für alle $f, g \in V$ sei $f+g \in V$ definiert durch $f+g \colon \mathbb{R} \to \mathbb{R}$, (f+g)(x) := f(x)+g(x) und für alle $f \in V$ und alle $\lambda \in \mathbb{R}$ sei $\lambda f \in V$ definiert durch $\lambda f \colon \mathbb{R} \to \mathbb{R}$, $(\lambda f)(x) := \lambda f(x)$.

- a) Zeigen Sie, dass V mit dieser Definition ein Vektorraum über \mathbb{R} ist.
- b) Beweisen Sie, dass $h_i: \mathbb{R} \to \mathbb{R}$ mit $h_0(x) := 1$, $h_1(x) := x^2 1$ und $h_2(x) := x^4 x^2 + 1$ für i = 0, 1, 2 eine Basis von V bilden.

Aufgabe 7.3. [Bestimmung einer Basis] Es seien $U := \{x \in \mathbb{R}^3 \mid x_1 + 2x_2 - x_3 = 0\}$ und $V := \{x \in \mathbb{R}^3 \mid x_1 - 2x_2 + 2x_3 = 0\}$ zwei Ebenen.

- a) Geben Sie eine mögliche Parameterdarstellung der Ebenen U und V an.
- b) Bestimmen Sie jeweils eine Basis von $U, V, U \cap V$ und U + V.

Aufgabe 7.4. [Matrizen und Gleichungssysteme] Gegeben seien die drei Vektoren $v_1 = (2, 1, -1), \ v_2 = (-1, -1, 2), \ v_3 = (1, 1, -3) \in \mathbb{R}^3$. Bestimmen Sie alle Matrizen $A \in \mathbb{R}^{3 \times 3}$ mit $Av_1 = v_2, \ Av_2 = v_3$ und $Av_3 = v_1$.

Tipp: Schreiben Sie die Matrix $A=(a_{ij})_{i,j}\in\mathbb{R}^{3\times 3}$ als $A=\begin{pmatrix}a_1&a_2&a_3\end{pmatrix}$ mit Spaltenvektoren $a_j=\begin{pmatrix}a_{1j}\\a_{2j}\\a_{3j}\end{pmatrix}$ für j=1,2,3.

Abgabe am 30.11.2022 bis 14:00 Uhr in die Briefkästen oder online.