Blatt 3

22.04.2024

Übungen zur Vorlesung

Höhere Mathematik IV (P)

Sommersemester 2024

Prof. Dr. B. Schweizer

M.Sc. Tim Schubert

In jeder Aufgabe sind maximal 10 Punkte zu erreichen, alle Aufgaben gehen in die Studienleistung mit ein.

Aufgabe 3.1. [Lösungseigenschaften des Newton-Potentials] Zeigen Sie, dass

$$-\Delta\Phi = \delta_0$$

im Distributionssinn auf \mathbb{R}^n gilt. Es soll ein anderer Beweis als in der Vorlesung geführt werden. In dieser Übung soll die Zwiebelintegration aus Aufgabe 2.2 auf den Ausdruck

$$\int_{\mathbb{R}^n} \nabla \Phi(x) \, \nabla \varphi(x) \, \mathrm{d}x$$

angewandt werden.

Hinweise: a) Verwenden Sie die Eigenschaft $\partial_r \Phi(r) = -\frac{1}{|\partial B_r(0)|}$ der Fundamentallösung. b) Verwenden Sie Mittelwertintegrale

$$\int_{\partial B_r(0)} \varphi(y) \, \mathrm{d}S(y) := \frac{1}{|\partial B_r(0)|} \int_{\partial B_r(0)} \varphi(y) \, \mathrm{d}S(y) = \int_{\partial B_1(0)} \varphi(ry) \, \mathrm{d}S(y) \,.$$

c) Zeigen und verwenden Sie

$$\oint_{\partial B_r(0)} \partial_r \varphi(y) \, dS(y) = \partial_r \left(\oint_{\partial B_r(0)} \varphi(y) \, dS(y) \right) .$$

Aufgabe 3.2. [Heaviside-Funktion und Dirac-Distribution]

a) Wir betrachten die Heaviside-Funktion $H: \mathbb{R} \to \mathbb{R}$ definiert durch

$$H(x) := \begin{cases} 0 & x < 0, \\ 1 & x \ge 0. \end{cases}$$

Zeigen Sie, dass $\partial_x H = \delta_0$ im Distributionssinn auf \mathbb{R}^n gilt.

b) Es sei $(a_j)_{j\in\mathbb{N}}$ eine Folge in \mathbb{R}^n mit $a_j \to a \in \mathbb{R}^n$. Zeigen Sie, dass die Folge $(\delta_{a_j})_{j\in\mathbb{N}}$ der Dirac-Distributionen in $\mathscr{D}'(\mathbb{R}^n)$ gegen δ_a konvergiert.

Aufgabe 3.3. [Rechenregeln der Fouriertransformation] Es seien $f: \mathbb{R} \to \mathbb{C}$ absolutintegrierbar, c > 0 und $\tau \in \mathbb{R}$. Wir definieren die Funktionen $h_i: \mathbb{R} \to \mathbb{C}$ durch

$$h_1(t) := f(ct), \qquad h_2(t) := f(t - \tau), \qquad h_3(t) := e^{i\tau t} f(t).$$

Zeigen Sie, dass die Fouriertransformierten der Funktionen h_i gegeben sind durch

a)
$$\hat{h}_1(\omega) = \frac{1}{c}\hat{f}\left(\frac{\omega}{c}\right)$$
, b) $\hat{h}_2(\omega) = e^{-i\tau\omega}\hat{f}(\omega)$, c) $\hat{h}_3(\omega) = \hat{f}(\omega - \tau)$.

Abgabe am 29.04.2024 bis 12:00 Uhr online auf Moodle.