## Instability effects in hysteresis models for porous media flow SIAM GS 2013 — Padova

#### Ben Schweizer

TU Dortmund

June 17, 2013

#### Fingering

## Fingering

# Flow in a porous medium

| wet sand |  |
|----------|--|
| dry sand |  |
|          |  |
|          |  |
|          |  |

#### Question

How does the water travel downwards ?

#### Experiments



#### Fig. 5. Development of unstable wetting front in experiment 2.

From: Selker, Parlange, Steenhuis, Fingered Flow in Two Dimensions. Part 2. Predicting Finger Moisture Profile, 1992.

#### **Numerics**



Numerics by A. Rätz

The model includes static and dynamic

hysteresis

#### Experimental observations

- We need a well-prepared medium: very dry sand
- fingers travel with constant speed •
- the saturation profile is not monotone in x inside the finger

#### **Mathematics**

The standard Richards equation

- defines an L<sup>1</sup>-contraction (Otto)
- L<sup>2</sup>-stability (Duijn, Pieters, Raats)

#### Question:

How do we modify Richards equation to obtain fingering?

## Modelling flow in porous media

Our aim is to describe the flow of water in unsaturated porous media.



| Variables  |                                               |
|------------|-----------------------------------------------|
| domain     | $\Omega \subset \mathbb{R}^{N}$               |
| saturation | $s : \Omega \times (0, T) \to \mathbb{R}$     |
| pressure   | $p : \Omega \times (0, T) \to \mathbb{R}$     |
| velocity   | $v : \Omega \times (0, T) \to \mathbb{R}^{N}$ |

#### Equations

Darcy law conservation law  $\partial_t s + \nabla \cdot v = 0$ some relation

 $v = -k(s)[\nabla p + e_x]$ p to s

We combine these to the evolution equation

$$\partial_t s = \nabla \cdot (k(s)[\nabla p + e_x]).$$

## (Standard) Pore Analysis



At a given saturation s, pores of radius  $d_0(s)$  must be filled

Needs the pressure

 $p = p_c(s)$ 



Richards equation:

$$\partial_t s = \nabla \cdot (k(s)[\nabla p_c(s) + e_x])$$

### Additional effect: Hysteresis

We better keep

#### Richards equation with hysteresis

$$\partial_t s = \nabla \cdot (k(s) [\nabla p + e_x])$$
 and a relation  $p$  to  $s$ 

## Hysteresis in porous media



From: Selker, Parlange, Steenhuis, 1992

- Hassanizadeh and Gray, Thermodynamic basis of capillary pressure ..., 1993
- Beliaev and Hassanizadeh, A theoretical model of hysteresis ..., 2001

For fixed saturation s, demand  $p\in [p_1,p_2]=:p_c(s)+[-\gamma,\gamma]$ 



## Existence results

**Idea:** Discretize (h) and regularize  $(\delta)$ 

$$\partial_t s^{h,\delta} = \psi_{\delta}([p^{h,\delta} - p_c(s^{h,\delta})]/\gamma)$$
$$\Delta \tilde{p}^{h,\delta} = \psi_{\delta}([p^{h,\delta} - p_c(s^{h,\delta})]/\gamma)$$



Main task: s has time-regularity and p has space regularity. Derive compactness from these facts!

#### Semi-linear problem, B.S. 2007

$$p \in p_c(s) + \gamma \operatorname{sign}(\partial_t s), \qquad \partial_t s = \Delta p$$

#### Fully non-linear problem, A.Lamacz, A.Rätz, B.S. 2011

$$p \in p_c(s) + \gamma \operatorname{sign}(\partial_t s) + \tau \partial_t s, \qquad \tau > 0$$
  
$$\partial_t s = \nabla \cdot (k(s) [\nabla p + e_x])$$

#### Two-phase flow, J.Koch, A.Rätz, B.S. 2013

$$p_1 - p_2 \in p_c(s) + \gamma \operatorname{sign}(\partial_t s) + \tau \partial_t s, \qquad \tau > 0$$
  
$$\partial_t s_j = \nabla \cdot (k_j(s_j) [\nabla p_j + g_j])$$

## Homogenization result

### Criticism of the model:

- vertical scanning curves
- (a) "no loops"

## Theorem [S. 2007]

Assume that many **play-type hysteresis** materials are homogenized. Then: The evolution equation remains

$$\partial_t s = k^* \Delta p.$$

Homogenization leads to a Prandtl-Ishlinskii hysteresis relation,

$$s(x,t) = \int_{I} p_c^{-1}(w(x,y,t)) \, dy, \qquad I = [0,1]$$
$$p(x) \in w(x,y) + \gamma(y) \operatorname{sign}(\partial_t w(x,y)) \quad \forall y \in I$$

Nonlinear homogenization result for two-phase flow in [P. Henning, M. Ohlberger, B.S.] M3AS, 2013



## Can the model explain fingering?

### Proposition (Stability)

Consider Richards equation with static hysteresis,

$$\begin{aligned} \partial_t s &= \nabla \cdot (k(s) [\nabla p + e_x]) + f \\ p &\in p_c(s) + \gamma \operatorname{sign}(\partial_t s) \end{aligned}$$

We assume that either  $\gamma = 0$  or that k > 0 is independent of s. This system generates an  $L^1$ -contraction: For two solutions  $s_j$  and sources  $f_j$  there holds, for all  $t_2 > t_1$ ,

$$\int_{\Omega} |s_1 - s_2|(x, t_2) \, dx \le \int_{\Omega} |s_1 - s_2|(x, t_1) \, dx + \int_{t_1}^{t_2} \int_{\Omega} |f_1 - f_2|(x, t) \, dx \, dt$$

### Theorem (Instability) [S. 2012]

System is no  $L^1$ -contraction for  $\gamma > 0$  and k = k(s).

Ben Schweizer (TU Dortmund) Instability effects in hysteresis models for pore

## Proof of instability — one-dimensional analysis

**Boundary condition:** High pressure until t = 0, lower pressure afterwards

#### The switching pressure condition

- coincides with experimental description
- high saturation near upper boundary after short time

A free boundary problem: X(t) and q(t) free parameters Right domain: hysteresis blocks evolution

$$\begin{split} k(s_1)[\partial_x p + 1] &= q & \text{on } \{(x,t) : X(t) < x < L_+\}\\ p(X(t) + 0, t) &= p_c(s_1(X(t))) + \gamma\\ p(L_+, t) &= p_+ \end{split}$$

Left domain: standard Richards evolution

$$\begin{split} \partial_t s &= \partial_x \left( k(s) [\partial_x p_c(s) + 1] \right) & \text{ on } \{ (x,t) : x < X(t) \} \\ p(X(t) - 0, t) &= p_c(s_1(X(t))) + \gamma, \qquad p(L_-,t) = p_- \\ (k(s) [\partial_x p + 1]) \left( X(t) - 0, t \right) &= q \end{split}$$

## Proof of the instability theorem



small perturbation of the initial values remains present for all times
below high saturation, the front travels faster — for all times

#### Conclusion: Richards equation with hysteresis and gravity is unstable

- \* Rigorous proof, based on a free boundary problem
- \* No heterogeneity of the medium assumed
- <sup>\*</sup> Instability for hysteresis and non-monotone boundary data

## Onset of fingering

Two-dimensional numerical results for Richards equation: static hysteresis,  $\tau = 0$ .



discrete saturations at  $t = t_0 = -2$ ,  $t \approx 509$ ,  $t \approx 2508$ ,  $t \approx 8487$ .

#### Result

static hysteresis alone can create an instability

All numerical results by A. Rätz, TU Dortmund

## Profiles in one space dimension, no dynamic factor

Pressure and saturation profiles without dynamic term,  $\tau = 10^{-3}$ Time instances: t = 0,  $t = 2 \cdot 10^{-6}$ , t = 170



## Profiles in one space dimension, $\tau > 0$

Pressure and saturation profiles with dynamic term,  $\tau = 5$ Time instances: t = 0,  $t = 2 \cdot 10^{-6}$ , t = 170



## Numerical results without static hysteresis

Evolution of saturation values for  $\tau=0.5,$  no static hysteresis.



Richards equation, time instances  $t \approx 56$ ,  $t \approx 114$ ,  $t \approx 201$ ,  $t \approx 406$  deterministic perturbation of the initial values

## Numerical results with static hysteresis

Evolution of saturation values for  $\tau=0.5~{\rm with}$  static hysteresis

|  | Lth |  |  |  |
|--|-----|--|--|--|
|--|-----|--|--|--|

Richards equation, time instances  $t \approx 56$ ,  $t \approx 114$ ,  $t \approx 201$ ,  $t \approx 406$  deterministic perturbation of the initial values

#### **Conclusions**:



Fingering for Richards flow with hysteresis and dynamic effect

- $\bullet\,$  hysteresis models for  $\tau>0$  are well-posed
- $\bullet\,$  front solutions for hysteresis and  $\tau=0$  are unstable
- static hysteresis &  $\tau > 0$  produces fingering

## Thank you!