Energy method approach to existence results for the Helmholtz equation in periodic wave-guides

Ben Schweizer

Wave Phenomena conference, February 15, 2022

Helmholtz equation in wave guide

Wave-guide geometry: $\Omega := \mathbb{R} \times S$ with $S \subset \mathbb{R}^{d-1}$ bounded Lipschitz Coefficient: $a : \Omega \to \mathbb{R}$ strictly positive, 1-periodic in x_1 Neumann condition on $\partial\Omega$

Given data: $f \in L^2(\Omega)$ with compact support, frequency $\omega \in \mathbb{R}$

Helmholtz equation

$$-\nabla \cdot (a\nabla u) = \omega^2 u + f \qquad \text{in } \Omega \tag{H}$$

Main result: existence of solutions

Important is the method: Only energy methods!

Literature

- A.-S. Bonnet-Ben Dhia, L. Chesnel, and X. Claeys. Radiation condition for a non-smooth interface between a dielectric and a metamaterial. Math. Models Methods Appl. Sci., 23(9):1629–1662, 2013.
- S. Fliss. A Dirichlet-to-Neumann approach for the exact computation of guided modes in photonic crystal waveguides. SIAM J. Sci. Comput., 35(2):B438–B461, 2013.
- S. Fliss and P. Joly. Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition. Arch. Ration. Mech. Anal., 219(1):349–386, 2016.
- V. Hoang. The limiting absorption principle for a periodic semi-infinite waveguide. SIAM J. Appl. Math., 71(3):791–810, 2011.
- V. Hoang and M. Radosz. Absence of bound states for waveguides in two-dimensional periodic structures. J. Math. Phys., 55(3):033506, 20, 2014.
- A. Kirsch and A. Lechleiter. A radiation condition arising from the limiting absorption principle for a closed fullor half-waveguide problem. Math. Methods Appl. Sci., 41(10):3955–3975, 2018.
- M. Radosz. New limiting absorption and limit amplitude principles for periodic operators. Z. Angew. Math. Phys., 66(2):253–275, 2015.

Main result on periodic wave-guides

Flux conservation: For solutions φ of (H) and $-\infty < \rho < r < \infty$ holds

$$\mathrm{Im}\,\int_{\{\rho\}\times S}a\nabla\varphi\cdot e_1\;\bar{\varphi}=\mathrm{Im}\,\int_{\{r\}\times S}a\nabla\varphi\cdot e_1\;\bar{\varphi}$$

Solution concept: $u \in H^1_{loc}(\Omega)$ with

(i) u solves (H) in Ω in the weak sense (ii) $\sup_{r \in \mathbb{Z}} \|u\|_{L^2((r,r+1) \times S)} < \infty$ (iii) the radiation condition is satisfied

A loose formulation of (iii) on the right: There exist finitely many quasiperiodic homogeneous solutions φ_j of (H) with positive energy-flux such that $u - \sum_j \alpha_j \varphi_j \to 0$ as $x_1 \to \infty$.

Theorem (Existence and uniqueness result for periodic media)

Let data Ω , f, ω , and a be fixed, $a(x + e_1) = a(x) \forall x \in \Omega$. Let ω be a non-singular frequency (see below). Then there exists one and only one solution u to the radiation problem (i)–(iii).

Non-singular frequency

We use $Au := -\nabla \cdot (a\nabla u)$, cylinders $W_r := (r, r+1) \times S$, the norm $\|u\|_{sL} := \sup_{r \in \mathbb{Z}} \|u\|_{L^2(W_r)}$, and the space

 $X := \left\{ u|_{W_0} \, \big| \, u \in H^1_{\text{loc}}(\Omega), \, \, \|u\|_{sL} < \infty, \, \, Au = \omega^2 u \text{ in } \Omega \right\}$

Definition (Non-singular frequency)

 $\omega > 0$ is called a non-singular frequency (for coefficient *a*) if:

- (a) Finite dimension: The space X has a basis $(\varphi_j)_{1 \le j \le M}$ with quasimoments $\xi_j \in [0, 2\pi)$ such that each φ_j possesses a ξ_j -quasiperiodic extension satisfying $A\varphi_j = \omega^2 \varphi_j$ in Ω .
- (b) Non-vanishing flux: For every quasiperiodic function $u \in H^1_{\text{loc}}(\Omega)$ with $Au = \omega^2 u$, the restriction $\varphi = u|_{W_0} \in X$ has the property

$$\operatorname{Im}\,\int_{W_0}a\nabla\varphi\cdot e_1\bar{\varphi}\neq 0\,.$$

Exclusion of singular frequencies appears in all "blue" references

Right-going waves, projections, radiation condition

Construct basis ϕ_j^{\pm} , flux of ϕ_j^+/ϕ_j^- is positive/negative $u \in X$ can be written as $u = \sum_{j=1}^N \alpha_j \phi_j^+ + \sum_{j=1}^N \beta_j \phi_j^-$ With, e.g., $\Pi_{X,+} : u \mapsto \sum_{j=1}^N \alpha_j \phi_j^+$ and orthogonal projection:

$$\Pi_{\pm}: L^2(W_0) \to X_{\pm} \subset L^2(W_0)$$

Π_+/Π_- projects onto right/left going base waves

Definition (Radiation condition)

Let ω be non-singular and Π_{\pm} the above projections. We say that $u: \Omega \to \mathbb{C}$ with $||u||_{sL} < \infty$ satisfies the radiation condition if

$$\Pi_{-}(u|_{W_r}) \to 0$$
 and $\Pi_{+}(u|_{W_{-r}}) \to 0$ as $r \to +\infty$

We identify a function on W_r with a function on W_0 via a shift.

Theorem (Media that are periodic at infinity)

 $\Omega = \mathbb{R} \times S$ be as above, $a : \Omega \to \mathbb{R}^{d \times d}$ essentially bounded, symmetric and positive. Periodicity outside a compact set: For some $R_0 > 0$

$$a(x+e_1) = a(x)$$
 for every $x \in \Omega$ with $|x_1| > R_0$,

 $\omega > 0$ non-singular frequency for the left and the right medium. If (i)-(iii) with f = 0 possesses only the trivial solution, then there is a unique solution u for arbitrary $f \in H^{-1}(\Omega)$ with compact support.

The theorem has the character of a Fredholm alternative

Failure 1: Try Limiting absorption

Solve on the infinite domain

$$-\nabla\cdot(a\nabla u^\delta)=(\omega^2-i\delta)u^\delta+f$$

$\delta>0$ provides decay at infinity

Normalized in central region, norms may look like this:

$$\exists (q_{\delta})_{\delta}: \quad |u^{\delta}(q_{\delta})| \to \infty$$

The limit $\delta \rightarrow 0$ cannot be performed!

On the proof

Good idea: Truncate to $\Omega_R := \Omega \cap \{-R - 1 < x_1 < R + 1\}$ and seek

$$u = u_R \in V_R := \left\{ u \in H^1(\Omega_R) \, \big| \, u|_{W_R} \in X_+ \, , \, \, u|_{W_{-R-1}} \in X_- \right\}$$

which solves the Helmholtz equation between -R and R.

T. Dohnal and B. Schweizer. A Bloch wave numerical scheme for scattering problems in periodic waveguides. SIAM J. Numer. Anal., 56(3):1848–1870, 2018.

Failure 2 (regarding uniform estimates)

u in q could be the sum of a large right-going and a large left-going wave!

The successful proof

- In W_q : $u = \Phi + \Psi + v$ with Φ right-going, Ψ left-going, v small
- Consider U := u Φ. Then: U is still right-going in W_R.
 And: U is approximately left-going in W_q
- Flux-equality for U implies that U is small in both boxes!
 - In W_R : $u \approx \Phi$
 - In W_q : $\Psi \approx 0$

Hence: u is similar (in norms) in W_R and W_q

• Contradiction argument, distinguishing cases regarding the positions $q = q_R$ of "bad" boxes: Solution sequence remains bounded

We have shown: existence result with energy methods

- periodic media: existence and uniqueness
- piecewise periodic media: Fredholm alternative

Open questions

- limiting absorption principle
- characterization of non-singular frequencies
- beyond wave-guide geometries

Thank you!