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Geometric optics vs. Wave equation

Fermat’s principle of
the fastest path:

Light finds the
fastest way to reach
the destination!

sin Θ1

sin Θ2
=
v1
v2

=
n2
n1

Huygens’ principle
of superpositions

Wave equation

∂2t u = ∆u

Numerical solution

2 / 21



Negative refraction
Radiation conditions

Uniqueness and transmission properties

Description of light
Maxwell’s equations and negatve index
Another mechanism of negative refraction

Maxwell’s equations and negatve index

Maxwell’s Equations (1865)

curl E = iωµH

curl H = −iωεE

E: electric field, H: magnetic field

H,E ∼ e−iωt

• Re ε < 0 possible
• µ is always 1
• Reµε < 0: medium is opaque

Veselago (1968)

Materials with negative index

ε < 0 and µ < 0 ⇒ negative index!

Solutions for positive and negative index

Pendry et al. (∼ 2000)

Design of a negative index meta-material
Use split rings and wires
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Microscopic split-ring geometry

The material parameter εη is

εη =

1 + i
κ

η3
in the rings

1 else

The parameter η appears 4×:

1 size of the microstructure (η)

2 thin rings (2βη2)

3 very thin slit (2αη4)

4 high conductivity (κη−3)
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Microscopic geometry with wires

(Hη, Eη) solves Maxwell, (Hη, Eη)→ (Ĥ, Ê) “geometrically”

Effective Maxwell system (A.Lamacz & B.S., 2016)

curl Ê = iωµeff Ĥ

curl Ĥ = −iωεeff Ê

with negative (for appropriate geometry and Re(εw) < 0) coefficients

µeff = µeff,R = (M̂)−1 and εeff = εeff,R +πγ2 εW .
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An interesting observation about wave transmission

Image taken from

C. Luo, S. G. Johnson, J. D. Joannopoulos, and

J. B. Pendry. All-angle negative refraction

without negative effective index. Phys. Rev.

B, 65:201104, May 2002

Our motivation:

Is this negative refraction at a
photonic crystal?

Explanation of the effect in [LJJP]:
The wave in the photonic crystal is a
Bloch wave which is determined by
two facts:

it has the right frequency

it conserves the vertical wave
number

These two facts can explain negative
refraction

6 / 21



Negative refraction
Radiation conditions

Uniqueness and transmission properties

Known radiation conditions
Bloch wave analysis
Outgoing wave condition

This talk

Mathematical subject: Radiation condition in periodic media

Homogenious media (Sommerfeld, 1912)

Periodic media (Fliss and Joly, 2016)

Periodic media with an interface (Lamacz and S., 2016)
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Radiation for homogeneous media: Sommerfeld, 1912

Homogeneous problem −∆u = ω2u in Rn

Fundamental solutions

Two fundamental Helmholtz solutions for x ∈ R3:

u+(x) :=
1

|x|
eiω|x| and u−(x) :=

1

|x|
e−iω|x|

Time-dependence e−iωt implies: u+ is an
outgoing wave, u− an incoming wave.

Sommerfeld condition

|x|(n−1)/2(∂|x|u− iωu)(x)→ 0 as |x| → ∞
(1)

Both elementary solutions decay for

|x| → ∞. It is not reasonable to

demand only a decay property

u+ satisfies (1),
it is admissible

u− does not
satisfy (1), it is
not admissible

Justification (Sommerfeld): Radiation condition implies uniqueness
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Radiation in a periodic wave-guide: Fliss and Joly, 2016

Periodic wave-guide
−∇ · (a∇u) = ω2u

Image taken from S. Fliss and P. Joly. Solutions of

the time-harmonic wave equation in periodic

waveguides: asymptotic behaviour and radiation

condition. Arch. Ration. Mech. Anal., 219, 2016

The periodic
waveguide is

neither 2-dimensional (no decay of waves)
nor 1-dimensional (variations in vertical direction)

Idea: The solution consists of finitely many outgoing Bloch waves at +∞

Definition (Outgoing radiation condition, Fliss and Joly, 2016)

A function u solves the outgoing radiation condition to the right if

u(.+ (p, 0)) =

N(ω)∑
m=1

u+mΦme
ipξ+m + w+(.+ (p, 0)), (2)

where w+ has exponential decay at +∞.

Justification: Radiation condition implies existence and uniqueness
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Radiation in media with an interface

x

x

1

2

The geometry of the transmission problem. We are interested
in waves that are generated in the photonic crystal.

−∇ · (a∇u) = ω2u

Program:

1 Develop an “outgoing wave condition” in a photonic crystal

2 Derive a uniqueness result (justification of the condition)

3 Conclude properties of transmitted waves
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Bloch expansion (... on one page!)

1.) f : Rn → R is written
with a Fourier transform:

f(x) =

∫
Rn
f̂(ξ)e2πiξ·x dξ

2.) ξ is written as ξ = k + j with
k ∈ Zn and j ∈ [0, 1)n =: Z

f(x) =

∫
Z

∑
k

f̂(k + j)e2πik·x︸ ︷︷ ︸
=:F

e2πij·x dj

3.) Periodic F = F (x; j) is expanded in periodic eigenfunctions Ψj,m(x):

F (x; j) =
∑
m∈N

αj,mΨj,m(x)
Uj,m(x) := Ψj,m(x)e2πij·x solves

−∇ · (a(x)∇Uj,m(x)) = µj,m Uj,m(x)

Result: The operator L = −∇ · (a(.)∇) acts as a multiplier:

f(x) =

∫
Z

∑
m∈N

αj,mUj,m(x) dj, Lf =

∫
Z

∑
m∈N

αj,mµj,mUj,m(x) dj
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Expansion of solutions

x

x

1

2

We consider u only on the
marked square

After a shift:
u ∈ L2((0, Rε)× (0, Rε))

Wave-vector: j ∈ Z := [0, 1)2. Eigenvalue number: m ∈ N0

Multiindex: λ = (j,m) ∈ IK . Basis: U+
λ (x) := Ψ+

λ (x) e2πiθ(λ)·x/ε

u(x) =
∑
λ∈IK

α+
λU

+
λ (x)

Expansion of an arbitrary function
u in Bloch waves

Idea: For “outgoing solutions” we demand:

u (on the right) consists only of right-going Bloch modes

Note: u periodic −→ Bloch expansion is a sum
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Energy transport of Bloch waves

In the expansion u(x) =
∑
λ∈IK

α+
λU

+
λ (x) , which Bloch modes are outgoing?

Recall: The Poynting vector P := E ×H measures the energy flux

Poynting number

For λ ∈ I, the Poynting number P+
λ describes the right-going energy:

P+
λ := Im−

∫
Yε

Ū+
λ (x) e1 ·

[
aε(x)∇U+

λ (x)
]
dx

Index sets: Left-going waves and “vertical waves”

I+<0 :=
{
λ ∈ I | P+

λ < 0
}

and I+=0 :=
{
λ ∈ I | P+

λ = 0
}

Projection: Onto left-going waves

Π+
<0u(x) :=

∑
λ∈IK∩ I+<0

α+
λU

+
λ (x)
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Outgoing wave condition

Given: u ∈ L2
loc(R× (0, h);C). Height h = εK.

Large factor R ∈ KN, RYε = (0, Rε)× (0, Rε)
ũ : R2 → C the h-periodic vertical extension.
Define u+R : RYε → C by

u+R(x1, x2) := ũ(Rε+ x1, x2)

Expand u+R:

u+R(x) =
∑
λ∈IR

α+
λ,RU

+
λ (x)

The coefficients (α+
λ,R)λ∈I encode

the behavior of u for large x1

Definition (Outgoing wave condition)

We say that u satisfies the outgoing wave condition on the right if:

a)
∫ h
0

∫ L+1

L
|u|2 is bounded, independently of L ≥ 0, and b)

−
∫
RYε

∣∣Π+
<0(u+R)

∣∣2 → 0 as R→∞
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Our wish-list

Transmission problem

a constant on the left, periodic on the right

Helmholtz equation: −∇ · (a∇u) = ω2u, periodic in vertical direction

Outgoing wave conditions, on the right:

−
∫
RYε

∣∣Π+
<0(u+R)

∣∣2 → 0 as R→∞

Wishful thinking: For every frequency ω > 0

There exists a solution to the problem

The solution to the problem is unique

Uniqueness cannot be expected

There are surface-waves −→ no uniqueness! S. Bozhevolnyi/Aalborg Univ.
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Bloch measures

G. Allaire and C. Conca. Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 1998

Let uR ∈ L2(WR;C) be a sequence

uR(x) =
∑
λ∈IR

α±λU
±
λ (x)

Discrete Bloch-measure for fixed l ∈ N0:

ν±l,R :=
∑

λ=(j,l)∈IR

|α±λ |
2 δj

where δj denotes the Dirac measure in j ∈ Z.
If, as R→∞,

ν±l,R → ν±l,∞

in the sense of measures, then

ν±l,∞ ∈M(Z) is a Bloch measure generated by u

The Brillouin zone Z = [0, 1)2.

A periodic u is expanded with

discrete values of j ∈ Z.
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Uniqueness result

Frequency assumption with Bloch-eigenvalues µ±m(j):

ω2 < inf
j∈Z,m≥1

µ+
m(j) (3)

Theorem (Uniqueness)

Let two solutions u and ũ of the transmission problem. Then the
difference v := u− ũ generates a Bloch measure that has support only on
vertical waves.

Corollary for non-singular frequencies ω: The Bloch measure of the
difference v vanishes.

Interpretation: Waves can be

localized at the interface
or

travelling vertically in the
photonic crystal

Figure: The indices

j ∈ Z corresponding to

“vertical waves”
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Uniqueness follows from energy conservation

Poynting vector bilinear form b±R : L2(WR;C)×H1(WR;C)→ C:

b+R(u, v) := −
∫
WR

ū(x) e1 · [aε(x)∇v(x)] dx

Let v solve the Helmholtz equation with coefficients a = aε, use

ϑ(x) :=


1 if |x1| ≤ εR
2− |x1|

εR if εR < |x1| < 2εR

0 if |x1| ≥ 2εR x
1

and the test-function ϑ(x) v(x):∫
R

∫ h

0

{
aε ϑ |∇v|2 + aε ∂x1ϑ v ∂x1

v
}

= ω2

∫
R

∫ h

0

ϑ |v|2

Take the imaginary parts and obtain the energy conservation

Im b−R
(
v−R , v

−
R

)
= Im b+R

(
v+R , v

+
R

)
Result: If both terms have opposite sign, they must vanish! 18 / 21
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Show ν±l,∞ = 0 for l ≥ 1

Let δ > 0 be a number with δ ≤ |ω2 − µ(j,m)|2 for all j and m ≥ 1.
Then, formally,

δ −
∫
WR

∣∣∣Πev,+
m≥1(u+R )

∣∣∣2 = δ
∑

λ=(j,m)∈IR
m≥1

∣∣〈u+R , Uλ〉R∣∣2
≤

∑
λ=(j,m)∈IR

m≥1

∣∣(ω2 − µλ)〈u+R , Uλ〉R
∣∣2

≤
∑
λ∈IR

∣∣〈ω2u+R , Uλ
〉
R
−
〈
µλu

+
R , Uλ

〉
R

∣∣2
=
∑
λ∈IR

∣∣〈L0(u+R) , Uλ
〉
R
−
〈
µλu

+
R , Uλ

〉
R

∣∣2 = 0

The calculation can be made precise with cut-off functions on large
squares. Result for Bloch measure: ν±l,∞ = 0 for l ≥ 1

A similar calculation yields: supp(ν±0,∞) ⊂
{
j ∈ Z |µ±0 (j) = ω2

}
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Transmission condition

Assume again: Frequency below second band
The vertical wave number is conserved:

Theorem (Transmission conditions)

Let u be a solution of the transmission problem.
Let ν±l,∞ be a Bloch measure to u.

Then: ν±l,∞ = 0 for l ≥ 1,

supp(ν±0,∞) ⊂
{
j ∈ Z |µ±0 (j) = ω2

}
and

supp(ν±0,∞) ⊂ {j ∈ Z | j2 = k2} ∪ J±=0,0

Waves must have:

the correct energy
and

the correct k2 (or be
vertical)

The theorem follows from uniqueness: Compare u with its projection to
the vertical wave number k2
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Conclusions and open problems

Corollary for non-singular frequencies ω:
The Bloch measure of u is supported on {j ∈ Z | j2 = k2}.
Negative refraction can therefore be explained ...

... using that the vertical wave number is conserved.

Open for the transmission problem:

1 Existence with limiting absorption?

2 Vertical waves excluded?

3 Implementation of the outgoing wave condition?

Thank you!
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