Outgoing Wave Conditions in Photonic Crystals and Transmission Properties at Interfaces

Workshop: "Waves in periodic media and metamaterials"

Agnes Lamacz & Ben Schweizer

technische universität dortmund

November 23, 2016

Description of light

Maxwell's equations and negative index Another mechanism of negative refraction

Geometric optics vs. Wave equation

Fermat's principle of **the fastest path:**

Light finds the fastest way to reach the destination!

$\sin \Theta_1$	v_1	_	n_2
$\sin \Theta_2$	$\overline{v_2}$	_	$\overline{n_1}$

Huygens' principle of **superpositions**

Wave equation
$$\partial_t^2 u = \Delta u$$

Numerical solution

Maxwell's equations and negatve index

Maxwell's Equations (1865)

 $\operatorname{curl} E = -i\omega\mu H$ $\operatorname{curl} H = -i\omega\varepsilon E$

E: electric field, H: magnetic field

 $H,E\sim e^{-i\omega t}$

- $\operatorname{Re} \varepsilon < 0$ possible
- $\bullet~\mu$ is always 1
- $\operatorname{Re} \mu \varepsilon < 0$: medium is opaque

Description of light Maxwell's equations and negatve index Another mechanism of negative refraction

Veselago (1968)

Materials with negative index

 $\varepsilon < 0$ and $\mu < 0 \Rightarrow$ negative index!

Solutions for positive and negative index

Pendry et al. (\sim 2000)

Design of a negative index meta-material Use split rings and wires

Negative refraction

Radiation conditions Uniqueness and transmission properties Description of light Maxwell's equations and negatve index Another mechanism of negative refraction

Microscopic split-ring geometry

The material parameter ε_{η} is

$$\varepsilon_\eta = \begin{cases} 1+i\frac{\kappa}{\eta^3} & \text{ in the rings} \\ 1 & \text{ else} \end{cases}$$

The parameter η appears $4\times:$

() size of the microstructure (η)

↓ y₂

У₁

 Σ^{η}_{Y} Y

- **(2)** thin rings $(2\beta\eta^2)$
- **(**) very thin slit $(2\alpha\eta^4)$
- ④ high conductivity $(\kappa\eta^{-3})$

Negative refraction Radiation conditions Description of light Maxwell's equations and negatve index Another mechanism of negative refraction

Microscopic geometry with wires

 (H^η, E^η) solves Maxwell, $(H^\eta, E^\eta) \to (\hat{H}, \hat{E})$ "geometrically"

Effective Maxwell system (A.Lamacz & B.S., 2016)

$$\operatorname{curl} \hat{E} = i\omega\mu_{\text{eff}}\,\hat{H}$$
$$\operatorname{curl} \hat{H} = -i\omega\varepsilon_{\text{eff}}\,\hat{E}$$

with negative (for appropriate geometry and $\operatorname{Re}(\varepsilon_w) < 0$) coefficients

$$\mu_{\rm eff} = \mu_{\rm eff,R} = (\hat{M})^{-1} \quad \text{ and } \quad \varepsilon_{\rm eff} = \varepsilon_{\rm eff,R} + \pi \gamma^2 \, \varepsilon_W.$$

Description of light Maxwell's equations and negatve index Another mechanism of negative refraction

An interesting observation about wave transmission

Image taken from

C. Luo, S. G. Johnson, J. D. Joannopoulos, and J. B. Pendry. All-angle negative refraction without negative effective index. Phys. Rev. B. 65:201104. May 2002

Our motivation:

Is this negative refraction at a photonic crystal?

Explanation of the effect in [LJJP]: The wave in the photonic crystal is a Bloch wave which is determined by two facts:

- it has the right frequency
- it conserves the vertical wave number

These two facts can explain negative refraction

Known radiation conditions Bloch wave analysis Dutgoing wave condition

This talk

Mathematical subject: Radiation condition in periodic media

- Homogenious media (Sommerfeld, 1912)
- Periodic media (Fliss and Joly, 2016)
- Periodic media with an interface (Lamacz and S., 2016)

Known radiation conditions Bloch wave analysis Outgoing wave condition

Radiation for homogeneous media: Sommerfeld, 1912

Homogeneous problem $-\Delta u = \omega^2 u$ in \mathbb{R}^n

Fundamental solutions

Two fundamental Helmholtz solutions for $x \in \mathbb{R}^3$:

$$u_+(x) := \frac{1}{|x|} e^{i\omega|x|}$$
 and $u_-(x) := \frac{1}{|x|} e^{-i\omega|x|}$

Time-dependence $e^{-i\omega t}$ implies: u_+ is an outgoing wave, u_- an incoming wave.

Sommerfeld condition

$$x|^{(n-1)/2}(\partial_{|x|}u - i\omega u)(x) \to 0 \quad \text{as } |x| \to \infty$$
(1)

Both elementary solutions decay for $|x| \rightarrow \infty$. It is not reasonable to demand only a decay property

- u_+ satisfies (1), it is admissible
- u_ does not satisfy (1), it is not admissible

Justification (Sommerfeld): Radiation condition implies uniqueness

Known radiation conditions Bloch wave analysis Outgoing wave condition

Radiation in a periodic wave-guide: Fliss and Joly, 2016

Image taken from S. Fliss and P. Joly. Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition. Arch. Ration. Mech. Anal., 219, 2016

The periodic waveguide is

neither 2-dimensional (no decay of waves)
nor 1-dimensional (variations in vertical direction)

Idea: The solution consists of finitely many outgoing Bloch waves at $+\infty$

Definition (Outgoing radiation condition, Fliss and Joly, 2016)

A function u solves the outgoing radiation condition to the right if $u(.+(p,0)) = \sum_{m=1}^{N(\omega)} u_m^+ \Phi_m e^{ip\xi_m^+} + w^+(.+(p,0)),$

where w^+ has exponential decay at $+\infty$.

Justification: Radiation condition implies existence and uniqueness

(2)

Known radiation conditions Bloch wave analysis Outgoing wave condition

Radiation in media with an interface

The geometry of the transmission problem. We are interested in waves that are generated in the photonic crystal.

$$-\nabla \cdot (a\nabla u) = \omega^2 u$$

Program:

- Oevelop an "outgoing wave condition" in a photonic crystal
- Oerive a uniqueness result (justification of the condition)
- Onclude properties of transmitted waves

Known radiation conditions Bloch wave analysis Outgoing wave condition

Bloch expansion (... on one page!)

1.) $f : \mathbb{R}^n \to \mathbb{R}$ is written with a Fourier transform:

2.)
$$\xi$$
 is written as $\xi = k + j$ with $k \in \mathbb{Z}^n$ and $j \in [0,1)^n =: Z$

$$f(x) = \int_{\mathbb{R}^n} \hat{f}(\xi) e^{2\pi i \xi \cdot x} \, d\xi$$

$$f(x) = \int_{Z} \underbrace{\sum_{k} \hat{f}(k+j) e^{2\pi i k \cdot x}}_{=:F} e^{2\pi i j \cdot x} dj$$

3.) Periodic F = F(x; j) is expanded in periodic eigenfunctions $\Psi_{j,m}(x)$:

$$F(x;j) = \sum_{m \in \mathbb{N}} \alpha_{j,m} \Psi_{j,m}(x) \qquad \qquad U_{j,m}(x) := \Psi_{j,m}(x) e^{2\pi i j \cdot x} \text{ solves} \\ -\nabla \cdot (a(x) \nabla U_{j,m}(x)) = \mu_{j,m} U_{j,m}(x)$$

Result: The operator $L = -\nabla \cdot (a(.)\nabla)$ acts as a multiplier:

$$f(x) = \int_Z \sum_{m \in \mathbb{N}} \alpha_{j,m} U_{j,m}(x) \, dj, \qquad Lf = \int_Z \sum_{m \in \mathbb{N}} \alpha_{j,m} \mu_{j,m} U_{j,m}(x) \, dj$$

Expansion of solutions

Known radiation conditions Bloch wave analysis Outgoing wave condition

We consider \boldsymbol{u} only on the marked square

 $\begin{array}{l} \text{After a shift:} \\ u \in L^2((0,R\varepsilon)\times(0,R\varepsilon)) \end{array}$

Wave-vector: $j \in Z := [0,1)^2$. Eigenvalue number: $m \in \mathbb{N}_0$ Multiindex: $\lambda = (j,m) \in I_K$. Basis: $U_{\lambda}^+(x) := \Psi_{\lambda}^+(x) e^{2\pi i \theta(\lambda) \cdot x/\varepsilon}$

$$u(x) = \sum_{\lambda \in I_K} \alpha_{\lambda}^+ U_{\lambda}^+(x)$$

Expansion of an arbitrary function u in Bloch waves

Idea: For "outgoing solutions" we demand:

• u (on the right) consists only of right-going Bloch modes

Note: u periodic \longrightarrow Bloch expansion is a sum

Known radiation conditions Bloch wave analysis Outgoing wave condition

Energy transport of Bloch waves

In the expansion

$$u(x) = \sum_{\lambda \in I_K} \alpha_{\lambda}^+ U_{\lambda}^+(x),$$
 which Bloch modes are outgoing?

Recall: The Poynting vector $P := E \times H$ measures the energy flux

Poynting number

For $\lambda \in I$, the Poynting number P_{λ}^+ describes the right-going energy:

$$P_{\lambda}^{+} := \operatorname{Im} \oint_{Y_{\varepsilon}} \bar{U}_{\lambda}^{+}(x) e_{1} \cdot \left[a^{\varepsilon}(x) \nabla U_{\lambda}^{+}(x) \right] dx$$

Index sets: Left-going waves and "vertical waves"

$$I^+_{<0} := \left\{ \lambda \in I \mid P^+_{\lambda} < 0 \right\} \quad \text{ and } \quad I^+_{=0} := \left\{ \lambda \in I \mid P^+_{\lambda} = 0 \right\}$$

Projection: Onto left-going waves

$$\Pi_{\leq 0}^+ u(x) := \sum_{\lambda \in I_K \cap I_{\leq 0}^+} \alpha_\lambda^+ U_\lambda^+(x)$$

Known radiation conditions Bloch wave analysis Outgoing wave condition

Outgoing wave condition

Given:
$$u \in L^2_{loc}(\mathbb{R} \times (0, h); \mathbb{C})$$
. Height $h = \varepsilon K$.
Large factor $R \in K\mathbb{N}$, $RY_{\varepsilon} = (0, R\varepsilon) \times (0, R\varepsilon)$
 $\tilde{u} : \mathbb{R}^2 \to \mathbb{C}$ the *h*-periodic vertical extension.
Define $u_R^+ : RY_{\varepsilon} \to \mathbb{C}$ by
 $u_R^+(x_1, x_2) := \tilde{u}(R\varepsilon + x_1, x_2)$

Expand u_R^+ :

$$u_R^+(x) = \sum_{\lambda \in I_R} \alpha_{\lambda,R}^+ U_\lambda^+(x)$$

The coefficients $(\alpha^+_{\lambda,R})_{\lambda\in I}$ encode the behavior of u for large x_1

Definition (Outgoing wave condition)

We say that u satisfies the outgoing wave condition on the right if: a) $\int_0^h \int_L^{L+1} |u|^2$ is bounded, independently of $L \ge 0$, and b) $\int_{RY} \left| \Pi_{<0}^+(u_R^+) \right|^2 \to 0 \text{ as } R \to \infty$

Known radiation conditions Bloch wave analysis Dutgoing wave condition

Our wish-list

Transmission problem

 \boldsymbol{a} constant on the left, periodic on the right

Helmholtz equation: $-\nabla \cdot (a \nabla u) = \omega^2 u$, periodic in vertical direction

Outgoing wave conditions, on the right:

$$\oint_{RY_{\varepsilon}} \left| \Pi_{<0}^+(u_R^+) \right|^2 \to 0 \text{ as } R \to \infty$$

Wishful thinking: For *every* frequency $\omega > 0$

- There exists a solution to the problem
- The solution to the problem is unique

Uniqueness cannot be expected

There are surface-waves \longrightarrow no uniqueness!

S. Bozhevolnyi/Aalborg Univ.

Bloch measures

properties

G. Allaire and C. Conca. Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 1998

Let $u_R \in L^2(W_R; \mathbb{C})$ be a sequence

$$u_R(x) = \sum_{\lambda \in I_R} \alpha_\lambda^{\pm} U_\lambda^{\pm}(x)$$

Discrete Bloch-measure for fixed $l \in \mathbb{N}_0$:

$$\nu_{l,R}^{\pm} := \sum_{\lambda = (j,l) \in I_R} |\alpha_{\lambda}^{\pm}|^2 \ \delta_j$$

where δ_j denotes the Dirac measure in $j \in Z$. If, as $R \to \infty$,

$$\nu_{l,R}^\pm \to \nu_{l,\infty}^\pm$$

in the sense of measures, then

$$u_{l,\infty}^{\pm} \in \mathcal{M}(Z)$$
 is a Bloch measure generated by u

The Brillouin zone $Z = [0, 1)^2$. A periodic u is expanded with discrete values of $j \in Z$.

Bloch measures and uniqueness Transmission condition and outlook

Uniqueness result

Frequency assumption with Bloch-eigenvalues $\mu_m^{\pm}(j)$:

$$\omega^2 < \inf_{j \in Z, \, m \ge 1} \mu_m^+(j) \tag{3}$$

Theorem (Uniqueness)

Let two solutions u and \tilde{u} of the transmission problem. Then the difference $v := u - \tilde{u}$ generates a Bloch measure that has support only on vertical waves.

Corollary for *non-singular frequencies* ω : The Bloch measure of the difference v vanishes.

Interpretation: Waves can be

- localized at the interface or
- travelling vertically in the photonic crystal

Figure: The indices $j \in Z$ corresponding to "vertical waves"

Bloch measures and uniqueness Transmission condition and outlook

Uniqueness follows from energy conservation

Poynting vector bilinear form
$$b_R^{\pm}: L^2(W_R; \mathbb{C}) \times H^1(W_R; \mathbb{C}) \to \mathbb{C}$$
:

$$b_R^+(u,v) := \int_{W_R} \bar{u}(x) e_1 \cdot [a^{\varepsilon}(x)\nabla v(x)] dx$$

Let v solve the Helmholtz equation with coefficients $a=a^{\varepsilon},$ use

$$\vartheta(x) := \begin{cases} 1 & \text{if } |x_1| \le \varepsilon R\\ 2 - \frac{|x_1|}{\varepsilon R} & \text{if } \varepsilon R < |x_1| < 2\varepsilon R\\ 0 & \text{if } |x_1| \ge 2\varepsilon R \end{cases}$$

and the test-function $\vartheta(x) \,\overline{v}(x)$:

and the test-function v(x)v(x).

$$\int_{\mathbb{R}} \int_{0}^{h} \left\{ a^{\varepsilon} \vartheta \, \left| \nabla v \right|^{2} + a^{\varepsilon} \, \partial_{x_{1}} \vartheta \, \overline{v} \, \partial_{x_{1}} v \right\} = \omega^{2} \int_{\mathbb{R}} \int_{0}^{h} \vartheta \, |v|^{2}$$

Take the imaginary parts and obtain the energy conservation

$$\operatorname{Im} b_R^-\left(v_R^-, v_R^-\right) = \operatorname{Im} b_R^+\left(v_R^+, v_R^+\right)$$

Result: If both terms have opposite sign, they must vanish!

Bloch measures and uniqueness Transmission condition and outlook

Show $\nu_{l,\infty}^{\pm}=0$ for $l\geq 1$

δ

Let $\delta>0$ be a number with $\delta\leq |\omega^2-\mu_{(j,m)}|^2$ for all j and $m\geq 1.$ Then, formally,

$$\begin{split} & \oint_{W_R} \left| \Pi_{m \ge 1}^{\text{ev},+}(u_R^+) \right|^2 = \delta \sum_{\lambda = (j,m) \in I_R \atop m \ge 1} \left| \left\langle u_R^+, U_\lambda \right\rangle_R \right|^2 \\ & \leq \sum_{\lambda = (j,m) \in I_R \atop m \ge 1} \left| (\omega^2 - \mu_\lambda) \langle u_R^+, U_\lambda \rangle_R \right|^2 \\ & \leq \sum_{\lambda \in I_R} \left| \left\langle \omega^2 u_R^+, U_\lambda \right\rangle_R - \left\langle \mu_\lambda u_R^+, U_\lambda \right\rangle_R \right|^2 \\ & = \sum_{\lambda \in I_R} \left| \left\langle \mathcal{L}_0(u_R^+), U_\lambda \right\rangle_R - \left\langle \mu_\lambda u_R^+, U_\lambda \right\rangle_R \right|^2 = 0 \end{split}$$

The calculation can be made precise with cut-off functions on large squares. **Result for Bloch measure:** $\nu_{l,\infty}^{\pm} = 0$ for $l \ge 1$ A similar calculation yields: $\operatorname{supp}(\nu_{0,\infty}^{\pm}) \subset \{j \in Z \mid \mu_0^{\pm}(j) = \omega^2\}$

Bloch measures and uniqueness Transmission condition and outlook

Transmission condition

Assume again: Frequency below second band The vertical wave number is conserved:

Theorem (Transmission conditions)

Let u be a solution of the transmission problem. Let $\nu_{l,\infty}^\pm$ be a Bloch measure to u.

Then:
$$\nu_{l,\infty}^{\pm} = 0$$
 for $l \ge 1$,

$$\operatorname{supp}(\nu_{0,\infty}^{\pm}) \ \subset \ \left\{ j \in Z \, | \, \mu_0^{\pm}(j) = \omega^2 \right\}$$

and

$$\operatorname{supp}(\nu_{0,\infty}^{\pm}) \subset \{ j \in Z \, | \, j_2 = k_2 \} \cup J_{=0,0}^{\pm}$$

The theorem follows from uniqueness: Compare \boldsymbol{u} with its projection to the vertical wave number \boldsymbol{k}_2

Bloch measures and uniqueness Transmission condition and outlook

Conclusions and open problems

Corollary for *non-singular frequencies* ω : The Bloch measure of u is supported on $\{j \in Z | j_2 = k_2\}$. Negative refraction can therefore be explained ...

... using that the vertical wave number is conserved.

Open for the transmission problem:

- Existence with limiting absorption?
- ② Vertical waves excluded?
- Implementation of the outgoing wave condition?

Thank you!