Waves in unbounded photonic crystals and transmission properties at interfaces

Ben Schweizer

technische universität

August 8, 2017

Fermat's principle of the fastest path:

Light finds the fastest way to reach the destination!

$$
\frac{\sin \Theta_{1}}{\sin \Theta_{2}}=\frac{v_{1}}{v_{2}}=\frac{n_{2}}{n_{1}}
$$

Huygens' principle of superpositions

$$
\begin{aligned}
& \text { Wave equation } \\
& \qquad \partial_{t}^{2} u=\Delta u
\end{aligned}
$$

Numerical solution

Maxwell's equations and negatve index

Maxwell's Equations (1865)

$$
\begin{aligned}
\operatorname{curl} E & =i \omega \mu H \\
\operatorname{curl} H & =-i \omega \varepsilon E
\end{aligned}
$$

E : electric field, H : magnetic field

$$
H, E \sim e^{-i \omega t}
$$

- $\operatorname{Re} \varepsilon<0$ possible
- μ is always 1
- $\operatorname{Re} \mu \varepsilon<0$: medium is opaque

Veselago (1968)

Materials with negative index
$\varepsilon<0$ and $\mu<0 \Rightarrow$ negative index!

Solutions for positive and negative index
Pendry et al. (~ 2000)
Design of a negative index meta-material Use split rings and wires

$\left(H^{\eta}, E^{\eta}\right)$ solves Maxwell, $\left(H^{\eta}, E^{\eta}\right) \rightarrow(\hat{H}, \hat{E})$ "geometrically"
Effective Maxwell system (A.Lamacz \& B.S., SIAM J.Math.Anal. 2017)

$$
\begin{aligned}
\operatorname{curl} \hat{E} & =i \omega \mu_{\text {eff }} \hat{H} \\
\operatorname{curl} \hat{H} & =-i \omega \varepsilon_{\text {eff }} \hat{E}
\end{aligned}
$$

with negative (for appropriate geometry and $\operatorname{Re}\left(\varepsilon_{w}\right)<0$) coefficients

$$
\mu_{\mathrm{eff}}=\mu_{\mathrm{eff}, \mathrm{R}} \quad \text { and } \quad \varepsilon_{\mathrm{eff}}=\varepsilon_{\mathrm{eff}, \mathrm{R}}+\pi \gamma^{2} \varepsilon_{W}
$$

Our motivation:

Image taken from
C. Luo, S. G. Johnson, J. D. Joannopoulos, and
J. B. Pendry. All-angle negative refraction without negative effective index. Phys. Rev.

B, 65:201104, May 2002

Is this negative refraction at a photonic crystal?

Geometry of the transmission problem.
We study the waves that are generated in the photonic crystal.

Helmholtz equation:

$$
-\nabla \cdot(a \nabla u)=\omega^{2} u
$$

Bloch expansion: Write an arbitrary function f in a smart way!

1.) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is written with a Fourier transform:

$$
f(x)=\int_{\mathbb{R}^{n}} \hat{f}(\xi) e^{2 \pi \mathrm{i} \xi \cdot x} d \xi
$$

2.) ξ is written as $\xi=k+j$ with $k \in \mathbb{Z}^{n}$ and $j \in[0,1)^{n}=: Z$

$$
f(x)=\int_{Z} \underbrace{\sum_{k} \hat{f}(k+j) e^{2 \pi \mathrm{i} k \cdot x}}_{=: F} e^{2 \pi \mathrm{i} j \cdot x} d j
$$

3.) Periodic $F=F(x ; j)$ is expanded in periodic eigenfunctions $\Psi_{j, m}(x)$:

$$
F(x ; j)=\sum_{m \in \mathbb{N}} \alpha_{j, m} \Psi_{j, m}(x)
$$

$$
\begin{aligned}
& U_{j, m}(x):=\Psi_{j, m}(x) e^{2 \pi \mathrm{i} j \cdot x} \text { solves } \\
& -\nabla \cdot\left(a(x) \nabla U_{j, m}(x)\right)=\mu_{j, m} U_{j, m}(x)
\end{aligned}
$$

Result: The operator $L=-\nabla \cdot(a(.) \nabla)$ acts as a multiplier:

$$
f(x)=\int_{Z} \sum_{m \in \mathbb{N}} \alpha_{j, m} U_{j, m}(x) d j, \quad L f=\int_{Z} \sum_{m \in \mathbb{N}} \alpha_{j, m} \mu_{j, m} U_{j, m}(x) d j
$$

Energy landscape in the periodic medium

The three surfaces correspond to $m=0,1,2$.
The vertical axis shows $\sqrt{\mu_{j, m}}$, where $\mu_{j, m}$ is the m-th eigenvalue for the wave vector $j=\left(j_{1}, j_{2}\right)$.

The arrows show gradients of the energy landscape

Energy transport by Bloch waves

For $\lambda=(j, m)$, which Bloch wave U_{λ} is "right going"?
Recall for Maxwell: The Poynting vector $P:=E \times H$ measures the energy flux

Poynting number

The Poynting number P_{λ} describes the right-going energy:

$$
P_{\lambda}:=\operatorname{Im} f_{Y_{\varepsilon}} \bar{U}_{\lambda}(x) e_{1} \cdot\left[a(x) \nabla U_{\lambda}(x)\right] d x
$$

Index sets: Left-going waves and "vertical waves"

$$
I_{<0}:=\left\{\lambda \in I \mid P_{\lambda}<0\right\} \quad \text { and } \quad I_{=0}:=\left\{\lambda \in I \mid P_{\lambda}=0\right\}
$$

Projection: Onto left-going waves

$$
\Pi_{<0} u(x):=\sum_{\lambda \in I_{<0}} \alpha_{\lambda} U_{\lambda}(x)
$$

Radiation for homogeneous media: Sommerfeld, 1912

Homogeneous problem $-\Delta u=\omega^{2} u$ in \mathbb{R}^{n}

Fundamental solutions

Two fundamental Helmholtz solutions for $x \in \mathbb{R}^{3}$: $u_{+}(x):=\frac{1}{|x|} e^{i \omega|x|} \quad$ and $\quad u_{-}(x):=\frac{1}{|x|} e^{-i \omega|x|}$

Time-dependence $e^{-i \omega t}$ implies: u_{+}is an outgoing wave, u_{-}an incoming wave.

Sommerfeld condition

$$
|x|^{(n-1) / 2}\left(\partial_{|x|} u-i \omega u\right)(x) \rightarrow 0 \quad \text { as } \quad|x| \rightarrow \infty
$$

Both elementary solutions decay for $|x| \rightarrow \infty$. It is not reasonable to demand only a decay property

- u_{+}satisfies the Sommerfeld condition
- u_{-}does not

Justification (Sommerfeld): Radiation condition implies uniqueness

Expansion of solutions

We consider u only on the marked square

After a shift:
$u \in L^{2}((0, R \varepsilon) \times(0, R \varepsilon))$
Wave-vector: $j \in Z:=[0,1)^{2}$. Eigenvalue number: $m \in \mathbb{N}_{0}$
Multiindex: $\lambda=(j, m) \in I_{K}$. Basis: $U_{\lambda}^{+}(x):=\Psi_{\lambda}^{+}(x) e^{2 \pi i \theta(\lambda) \cdot x / \varepsilon}$

$$
u(x)=\sum_{\lambda \in I_{K}} \alpha_{\lambda}^{+} U_{\lambda}^{+}(x)
$$

Expansion of an arbitrary function u in Bloch waves

For "outgoing solutions" we demand (on the right):
u consists only of right-going Bloch modes

[^0]
Transmission problem

a constant on the left, periodic on the right
Helmholtz equation: $-\nabla \cdot(a \nabla u)=\omega^{2} u$, periodic in vertical direction
Outgoing wave conditions, on the right:

$$
f_{R Y_{\varepsilon}}\left|\Pi_{<0}^{+}\left(u_{R}^{+}\right)\right|^{2} \rightarrow 0 \quad \text { as } \quad R \rightarrow \infty
$$

Wishful thinking: For every frequency $\omega>0$

- There exists a solution to the problem
- The solution to the problem is unique

Uniqueness cannot be expected
There are surface-waves \longrightarrow no uniqueness!

S. Bozhevolnyi/Aalborg Univ.

Bloch measures

G. Allaire and C. Conca. Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 1998

Let $u_{R} \in L^{2}\left(W_{R} ; \mathbb{C}\right)$ be a sequence

$$
u_{R}(x)=\sum_{\lambda \in I_{R}} \alpha_{\lambda}^{ \pm} U_{\lambda}^{ \pm}(x)
$$

Discrete Bloch-measure for fixed $l \in \mathbb{N}_{0}$:

$$
\nu_{l, R}^{ \pm}:=\sum_{\lambda=(j, l) \in I_{R}}\left|\alpha_{\lambda}^{ \pm}\right|^{2} \delta_{j}
$$

where δ_{j} denotes the Dirac measure in $j \in Z$.
If, as $R \rightarrow \infty$,

$$
\nu_{l, R}^{ \pm} \rightarrow \nu_{l, \infty}^{ \pm}
$$

in the sense of measures, then
$\nu_{l, \infty}^{ \pm} \in \mathcal{M}(Z)$ is a Bloch measure generated by u

The Brillouin zone $Z=[0,1)^{2}$. A periodic u is expanded with discrete values of $j \in Z$.

Frequency assumption with Bloch-eigenvalues $\mu_{m}^{ \pm}(j)$:

$$
\omega^{2}<\inf _{j \in Z, m \geq 1} \mu_{m}^{+}(j)
$$

Theorem (A.Lamacz \& B.S., Uniqueness)

Let u and \tilde{u} be two solutions of the transmission problem. Then the difference $v:=u-\tilde{u}$ generates a Bloch measure that has support only on vertical waves.

Interpretation: Waves can be

- localized at the interface
or
- travelling vertically in the photonic crystal

Figure: The indices $j \in Z$ corresponding to "vertical waves"

Let v solve the Helmholtz equation with coefficients $a=a^{\varepsilon}$. Use
$\vartheta(x):= \begin{cases}1 & \text { if }\left|x_{1}\right| \leq \varepsilon R \\ 2-\frac{\left|x_{1}\right|}{\varepsilon R} & \text { if } \varepsilon R<\left|x_{1}\right|<2 \varepsilon R \\ 0 & \text { if }\left|x_{1}\right| \geq 2 \varepsilon R\end{cases}$

and the test-function $\vartheta(x) \bar{v}(x)$ to obtain

$$
\int_{\mathbb{R}} \int_{0}^{h}\left\{a^{\varepsilon} \vartheta|\nabla v|^{2}+a^{\varepsilon} \partial_{x_{1}} \vartheta \bar{v} \partial_{x_{1}} v\right\}=\omega^{2} \int_{\mathbb{R}} \int_{0}^{h} \vartheta|v|^{2}
$$

Poynting vector bilinear form $b_{R}^{ \pm}: L^{2}\left(W_{R} ; \mathbb{C}\right) \times H^{1}\left(W_{R} ; \mathbb{C}\right) \rightarrow \mathbb{C}$:

$$
b_{R}^{+}(u, v):=f_{W_{R}} \bar{u}(x) e_{1} \cdot\left[a^{\varepsilon}(x) \nabla v(x)\right] d x
$$

Take the imaginary parts and obtain the energy conservation

$$
\operatorname{Im} b_{R}^{-}\left(v_{R}^{-}, v_{R}^{-}\right)=\operatorname{Im} b_{R}^{+}\left(v_{R}^{+}, v_{R}^{+}\right)
$$

Result: If both terms have opposite sign, they must vanish!

Let $\delta>0$ be a number with $\delta \leq\left|\omega^{2}-\mu_{(j, m)}\right|^{2}$ for all j and $m \geq 1$. Then, formally,

$$
\begin{aligned}
& \delta f_{W_{R}}\left|\Pi_{m \geq 1}^{\mathrm{ev},+}\left(u_{R}^{+}\right)\right|^{2}=\delta \\
& \quad \leq \sum_{\substack{\lambda=(j, m) \in I_{R} \\
m \geq 1}}\left|\left\langle u_{R}^{+}, U_{\lambda}\right\rangle_{R}\right|^{2} \\
& \leq \sum_{\lambda \in(j, m) \in I_{R}}^{m \geq 1} \\
&\left|\left(\omega^{2}-\mu_{\lambda}\right)\left\langle u_{R}^{+}, U_{\lambda}\right\rangle_{R}\right|^{2} \\
&=\sum_{\lambda \in I_{R}}\left|\left\langle\omega_{0} u_{R}^{+}, U_{\lambda}\right\rangle_{R}-\left\langle u_{\lambda}^{+}\right), U_{\lambda}\right\rangle_{R}^{+},\left.\left\langle U_{\lambda}\right\rangle_{R}\right|^{2}
\end{aligned}
$$

The calculation can be made precise with cut-off functions on large squares. Result for Bloch measure: $\nu_{l, \infty}^{ \pm}=0$ for $l \geq 1$

A similar calculation yields: $\quad \operatorname{supp}\left(\nu_{0, \infty}^{ \pm}\right) \subset\left\{j \in Z \mid \mu_{0}^{ \pm}(j)=\omega^{2}\right\}$

Transmission conditions

Assume again: Frequency below second band The vertical wave number is conserved:

Theorem (Transmission conditions)

Let u be a solution of the transmission problem. Let $\nu_{l, \infty}^{ \pm}$be a Bloch measure to u.
Then: $\nu_{l, \infty}^{ \pm}=0$ for $l \geq 1$,

$$
\operatorname{supp}\left(\nu_{0, \infty}^{ \pm}\right) \subset\left\{j \in Z \mid \mu_{0}^{ \pm}(j)=\omega^{2}\right\}
$$

and

$$
\operatorname{supp}\left(\nu_{0, \infty}^{ \pm}\right) \subset\left\{j \in Z \mid j_{2}=k_{2}\right\} \cup J_{=0,0}^{ \pm}
$$

Waves must have:

- the correct energy and
- the correct k_{2} (or be vertical)

The theorem follows from uniqueness: Compare u with its projection to the vertical wave number k_{2}

A numerical scheme

Based on the radiation condition \longrightarrow numerical scheme

T. Dohnal and B. Schweizer: A Bloch wave numerical scheme for scattering problems in periodic wave-guides (submitted)

$$
-\nabla \cdot(a \nabla u)=\omega^{2}(1+\mathrm{i} \delta) u+f
$$

Concept:

- At the far left/right:

Solution is a linear combination of outgoing Bloch waves

- Standard finite elements in the core domain

In the radiation boxes $W_{R, L}^{ \pm}$use $X^{ \pm}:=\operatorname{span}\left\{U_{\lambda}^{ \pm} \mid \lambda \in I^{ \pm}\right\}$, The index sets $I^{ \pm}$satisfy $\lambda \in I^{ \pm} \Rightarrow \pm P_{\lambda}^{ \pm}>0$.

Function space:
$V:=\left\{u \in H^{1}\left(\Omega_{R+L}\right) \mid u\right.$ vertically periodic, $\left.\{u\}_{R, L}^{+} \in X^{+},\{u\}_{R, L}^{-} \in X^{-}\right\}$

Bilinear form (with cut-off function ϑ as above):

$$
\begin{aligned}
\beta(u, v):= & \int_{\Omega_{R+L}} a \nabla \bar{u} \cdot \nabla v \vartheta-\int_{\Omega_{R+L}}\left(1-\mathrm{i} \delta \mathbf{1}_{\Omega_{R}}\right) \omega^{2} \bar{u} v \vartheta \\
& \quad-\frac{1}{\varepsilon L} \int_{W_{R, L}^{+}} a \nabla \bar{u} \cdot e_{1} v+\frac{1}{\varepsilon L} \int_{W_{R, L}^{-}} a \nabla \bar{u} \cdot e_{1} v=\int_{\Omega_{R}} \bar{f} v
\end{aligned}
$$

Coercivity of β follows from $\nabla \vartheta=\mp \frac{1}{L} e_{1}$ and $P_{\lambda}^{ \pm}>0$.

Transmission into periodic medium I: Large wave-length

Transmission II: Wave-length comparable to structure

A finite crystal with positive refraction property

A finite crystal with negative refraction property

Thank you!

[^0]: S. Fliss and P. Joly. Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour and radiation condition. Arch. Ration. Mech. Anal., 219, 2016

