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Geometric optics vs. Wave equation

Fermat’s principle of
the fastest path:

Light finds the
fastest way to reach
the destination!

sin Θ1

sin Θ2
=
v1

v2
=
n2

n1

Huygens’ principle
of superpositions

Wave equation

∂2
t u = ∆u

Numerical solution
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Maxwell’s equations and negatve index

Maxwell’s Equations (1865)

curl E = iωµH

curl H = −iωεE

E: electric field, H: magnetic field

H,E ∼ e−iωt

• Re ε < 0 possible
• µ is always 1
• Reµε < 0: medium is opaque

Veselago (1968)

Materials with negative index

ε < 0 and µ < 0 ⇒ negative index!

Solutions for positive and negative index

Pendry et al. (∼ 2000)

Design of a negative index meta-material
Use split rings and wires
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Microscopic geometry with wires

(Hη, Eη) solves Maxwell, (Hη, Eη)→ (Ĥ, Ê) “geometrically”

Effective Maxwell system (A.Lamacz & B.S., SIAM J.Math.Anal. 2017)

curl Ê = iωµeff Ĥ

curl Ĥ = −iωεeff Ê

with negative (for appropriate geometry and Re(εw) < 0) coefficients

µeff = µeff,R and εeff = εeff,R +πγ2 εW .
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Wave transmission into photonic crystals

Our motivation:

Image taken from

C. Luo, S. G. Johnson, J. D. Joannopoulos, and

J. B. Pendry. All-angle negative refraction

without negative effective index. Phys. Rev.

B, 65:201104, May 2002

Is this negative refraction at a
photonic crystal?

Geometry of the transmission problem.

We study the waves that are generated in the photonic crystal.

Helmholtz equation:

−∇ · (a∇u) = ω2u
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Bloch expansion: Write an arbitrary function f in a smart way!

1.) f : Rn → R is written
with a Fourier transform:

f(x) =

∫
Rn
f̂(ξ)e2πiξ·x dξ

2.) ξ is written as ξ = k + j with
k ∈ Zn and j ∈ [0, 1)n =: Z

f(x) =

∫
Z

∑
k

f̂(k + j)e2πik·x

︸ ︷︷ ︸
=:F

e2πij·x dj

3.) Periodic F = F (x; j) is expanded in periodic eigenfunctions Ψj,m(x):

F (x; j) =
∑
m∈N

αj,mΨj,m(x)
Uj,m(x) := Ψj,m(x)e2πij·x solves

−∇ · (a(x)∇Uj,m(x)) = µj,m Uj,m(x)

Result: The operator L = −∇ · (a(.)∇) acts as a multiplier:

f(x) =

∫
Z

∑
m∈N

αj,mUj,m(x) dj, Lf =

∫
Z

∑
m∈N

αj,mµj,mUj,m(x) dj
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Energy landscape in the periodic medium

The three surfaces correspond
to m = 0, 1, 2.
The vertical axis shows√
µj,m, where µj,m is the

m-th eigenvalue for the wave
vector j = (j1, j2).

The arrows show gradients of
the energy landscape
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Energy transport by Bloch waves

For λ = (j,m), which Bloch wave Uλ is “right going”?
Recall for Maxwell: The Poynting vector P := E ×H measures the energy flux

Poynting number

The Poynting number Pλ describes the right-going energy:

Pλ := Im−
∫
Yε

Ūλ(x) e1 · [a(x)∇Uλ(x)] dx

Index sets: Left-going waves and “vertical waves”

I<0 := {λ ∈ I | Pλ < 0} and I=0 := {λ ∈ I | Pλ = 0}

Projection: Onto left-going waves

Π<0u(x) :=
∑
λ∈I<0

αλUλ(x)
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Radiation for homogeneous media: Sommerfeld, 1912

Homogeneous problem −∆u = ω2u in Rn

Fundamental solutions

Two fundamental Helmholtz solutions for x ∈ R3:

u+(x) :=
1

|x|
eiω|x| and u−(x) :=

1

|x|
e−iω|x|

Time-dependence e−iωt implies: u+ is an
outgoing wave, u− an incoming wave.

Sommerfeld condition

|x|(n−1)/2(∂|x|u− iωu)(x)→ 0 as |x| → ∞

Both elementary solutions decay for

|x| → ∞. It is not reasonable to

demand only a decay property

u+ satisfies the
Sommerfeld
condition

u− does not

Justification (Sommerfeld): Radiation condition implies uniqueness
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Expansion of solutions

x

x

1

2

We consider u only on the
marked square

After a shift:
u ∈ L2((0, Rε)× (0, Rε))

Wave-vector: j ∈ Z := [0, 1)2. Eigenvalue number: m ∈ N0

Multiindex: λ = (j,m) ∈ IK . Basis: U+
λ (x) := Ψ+

λ (x) e2πiθ(λ)·x/ε

u(x) =
∑
λ∈IK

α+
λU

+
λ (x)

Expansion of an arbitrary function
u in Bloch waves

For “outgoing solutions” we demand (on the right):

u consists only of right-going Bloch modes

S. Fliss and P. Joly. Solutions of the time-harmonic wave equation in periodic waveguides: asymptotic behaviour

and radiation condition. Arch. Ration. Mech. Anal., 219, 2016
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Our wish-list

Transmission problem

a constant on the left, periodic on the right

Helmholtz equation: −∇ · (a∇u) = ω2u, periodic in vertical direction

Outgoing wave conditions, on the right:

−
∫
RYε

∣∣Π+
<0(u+

R)
∣∣2 → 0 as R→∞

Wishful thinking: For every frequency ω > 0

There exists a solution to the problem

The solution to the problem is unique

Uniqueness cannot be expected

There are surface-waves −→ no uniqueness! S. Bozhevolnyi/Aalborg Univ.
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Bloch measures

G. Allaire and C. Conca. Bloch wave homogenization and spectral asymptotic analysis. J. Math. Pures Appl. 1998

Let uR ∈ L2(WR;C) be a sequence

uR(x) =
∑
λ∈IR

α±λU
±
λ (x)

Discrete Bloch-measure for fixed l ∈ N0:

ν±l,R :=
∑

λ=(j,l)∈IR

|α±λ |
2 δj

where δj denotes the Dirac measure in j ∈ Z.
If, as R→∞,

ν±l,R → ν±l,∞

in the sense of measures, then

ν±l,∞ ∈M(Z) is a Bloch measure generated by u

The Brillouin zone Z = [0, 1)2.

A periodic u is expanded with

discrete values of j ∈ Z.
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Uniqueness result

Frequency assumption with Bloch-eigenvalues µ±m(j):

ω2 < inf
j∈Z,m≥1

µ+
m(j)

Theorem (A.Lamacz & B.S., Uniqueness)

Let u and ũ be two solutions of the transmission problem. Then the
difference v := u− ũ generates a Bloch measure that has support only on
vertical waves.

Interpretation: Waves can be

localized at the interface

or

travelling vertically in the
photonic crystal

Figure: The indices

j ∈ Z corresponding to

“vertical waves”
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Uniqueness follows from energy conservation

Let v solve the Helmholtz equation with coefficients a = aε. Use

ϑ(x) :=


1 if |x1| ≤ εR
2− |x1|

εR if εR < |x1| < 2εR

0 if |x1| ≥ 2εR x
1

and the test-function ϑ(x) v(x) to obtain∫
R

∫ h

0

{
aε ϑ |∇v|2 + aε ∂x1

ϑ v ∂x1
v
}

= ω2

∫
R

∫ h

0

ϑ |v|2

Poynting vector bilinear form b±R : L2(WR;C)×H1(WR;C)→ C:

b+R(u, v) := −
∫
WR

ū(x) e1 · [aε(x)∇v(x)] dx

Take the imaginary parts and obtain the energy conservation

Im b−R
(
v−R , v

−
R

)
= Im b+R

(
v+
R , v

+
R

)
Result: If both terms have opposite sign, they must vanish!
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Show ν±l,∞ = 0 for l ≥ 1

Let δ > 0 be a number with δ ≤ |ω2 − µ(j,m)|2 for all j and m ≥ 1.
Then, formally,

δ −
∫
WR

∣∣∣Πev,+
m≥1(u+

R )
∣∣∣2 = δ

∑
λ=(j,m)∈IR

m≥1

∣∣〈u+
R , Uλ

〉
R

∣∣2
≤

∑
λ=(j,m)∈IR

m≥1

∣∣(ω2 − µλ)〈u+
R , Uλ〉R

∣∣2
≤
∑
λ∈IR

∣∣〈ω2u+
R , Uλ

〉
R
−
〈
µλu

+
R , Uλ

〉
R

∣∣2
=
∑
λ∈IR

∣∣〈L0(u+
R) , Uλ

〉
R
−
〈
µλu

+
R , Uλ

〉
R

∣∣2 = 0

The calculation can be made precise with cut-off functions on large
squares. Result for Bloch measure: ν±l,∞ = 0 for l ≥ 1

A similar calculation yields: supp(ν±0,∞) ⊂
{
j ∈ Z |µ±0 (j) = ω2

}
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Transmission conditions

Assume again: Frequency below second band
The vertical wave number is conserved:

Theorem (Transmission conditions)

Let u be a solution of the transmission problem.
Let ν±l,∞ be a Bloch measure to u.

Then: ν±l,∞ = 0 for l ≥ 1,

supp(ν±0,∞) ⊂
{
j ∈ Z |µ±0 (j) = ω2

}
and

supp(ν±0,∞) ⊂ {j ∈ Z | j2 = k2} ∪ J±=0,0

Waves must have:

the correct energy
and

the correct k2 (or be
vertical)

The theorem follows from uniqueness: Compare u with its projection to
the vertical wave number k2
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A numerical scheme

Based on the radiation condition −→ numerical scheme

T. Dohnal and B. Schweizer: A Bloch wave numerical

scheme for scattering problems in periodic wave-guides

(submitted)
−∇ · (a∇u) = ω2(1 + iδ)u+ f

Concept:

At the far left/right:
Solution is a linear combination of outgoing Bloch waves

Standard finite elements in the core domain
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Design of the scheme, negative refraction

In the radiation boxes W±R,L use X± := span{U±λ |λ ∈ I±},
The index sets I± satisfy λ ∈ I± ⇒ ±P±λ > 0.

Function space:

V :=

{
u ∈ H1(ΩR+L)

∣∣∣∣ u vertically periodic, {u}+R,L ∈ X
+, {u}−R,L ∈ X

−
}

Bilinear form (with cut-off function ϑ as above):

β(u, v) :=

∫
ΩR+L

a∇ū · ∇v ϑ−
∫

ΩR+L

(1− iδ1ΩR)ω2ū v ϑ

− 1

εL

∫
W+
R,L

a∇ū · e1 v +
1

εL

∫
W−R,L

a∇ū · e1 v =

∫
ΩR

f̄ v

Coercivity of β follows from ∇ϑ = ∓ 1
Le1 and P±λ > 0.
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The scheme
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Numerical results: Comparison with homogenization

Transmission into periodic medium I: Large wave-length

Transmission II: Wave-length comparable to structure

19 / 21



Description of light: Refraction, Bloch waves, Radiation
Uniqueness result for the Bloch measure

A numerical scheme

The scheme
Comparison with homogenization
A radiating source

A finite crystal with positive refraction property

20 / 21



Description of light: Refraction, Bloch waves, Radiation
Uniqueness result for the Bloch measure

A numerical scheme

The scheme
Comparison with homogenization
A radiating source

A finite crystal with negative refraction property

Thank you!
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