
Potentialgleichung

Kapitel 35 – Potentialgleichung
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Potentialgleichung Potentialgleichung

Ziel: Modelliere die Wärmeausbreitung in einem Gebiet K Ă Rn mit n “ 2 oder n “ 3.

Variablen:

u : K Ñ R die Temperaturverteilung

j⃗ : K Ñ Rn der Wärmefluss (in welche Richtung wird Wärmeenergie transportiert
und wie viel)

Gleichungen:

Sei V Ă K ein beliebiges Volumen mit äußerem Normalenvektor n⃗. Da sich die
Wärmeverteilung nicht ändert, wird insgesamt keine Wärmeenergie in das Volumen
V hineintransportiert, d.h. (im Fall n “ 3)

ż

BV

j⃗ ¨ n⃗ dS “ 0
Gauß
ô

ż

V

div⃗j dpx, y, zq “ 0

Da V Ă K beliebig war, gilt
div j⃗ “ 0 in K

Wärmeenergie strömt von wärmeren in kältere Regionen, mit einer Flussrate, die
proportional zum Temperaturgradienten ist,

j⃗ “ ´a∇u in K

Dabei ist a ą 0 die Leitfähigkeit des Materials.

Insgesamt: divp´a∇uq “ 0 ô ∆u “ 0 in K.
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Potentialgleichung Potentialgleichung

Definition 35.1 (Potentialgleichung)

Die Potentialgleichung oder Laplace-Gleichung lautet

∆u “ 0 in K

Die Lösungen der Potentialgleichung heißen harmonische Funktionen.

Als Verallgemeinerung betrachtet man auch die Poisson-Gleichung
(inhomogene Laplace-Gleichung)

∆u “ f

Die Gleichung wird auf einem Gebiet K Ă R2 oder R3 betrachtet.

Der Rand BK besteht aus endlich vielen regulären Kurven (G Ă R2) oder
orientierten Flächenstücken (G Ă R3).

n⃗: sei der äußere Normalenvektor auf BK (mit Länge 1)

Bu

Bn⃗
“ ∇u ¨ n⃗ sei die Richtungsableitung nach der äußeren Normalen
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Potentialgleichung Eigenschaften harmonischer Funktionen

Harmonische Funktionen haben besondere Eigenschaften. Wir formulieren diese in
Dimension n “ 3. Sie gelten entsprechend auch für n “ 2.

Satz 35.2 (Mittelwerteigenschaft I)

Sei u : K Ñ R zweimal stetig differenzierbar mit ∆u “ 0 in K. Dann gilt

upx⃗q “
1

|BBrpx⃗q|

ż

BBrpx⃗q

u dS

für jede Kugel Brpx⃗q “ ty⃗ P R3 | |x⃗´ y⃗| ă ru mit Brpx⃗q Ă K.

Dabei ist |BBrpx⃗q| “
ş

BBrpx⃗q
1 dS.

Beweis: Definiere die Funktion

Φprq :“
1

|BBrpx⃗q|

ż

BBrpx⃗q

u dS

und zeige, dass Φ1prq “ 0. Folglich gilt

Φprq “ lim
sÑ0`

Φpsq “ upx⃗q.
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Potentialgleichung Eigenschaften harmonischer Funktionen

Satz 35.3 (Mittelwerteigenschaft II)

Sei u : K Ñ R zweimal stetig differenzierbar mit ∆u “ 0 in K und Brpx⃗q Ă K.
Sei weiterhin φ : r0, rs Ñ R eine integrierbare Gewichtsfunktion mit
ş

Brp0q
φp|x⃗|q dx⃗ “ 1. Dann gilt

upx⃗q “

ż

Brpx⃗q

upy⃗qφp|y⃗ ´ x⃗|q dy⃗.

Der Beweis verwendet die Zwiebelintegration und Satz 35.2, wonach (in
Dimension n “ 3)

ż

Brpx⃗q

upy⃗qφp|y⃗ ´ x⃗|q dy⃗ “

ż r

0

ż

BB1p0q

upx⃗` sz⃗qφpsq dSpz⃗q s2 ds

“

ż r

0

upx⃗q|BB1p0q|φpsqs2 ds

“ upx⃗q

ż

Brp0q

φp|y⃗|q dy⃗ “ upx⃗q.
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Potentialgleichung Eigenschaften harmonischer Funktionen

Harmonische Funktionen sind unendlich oft differenzierbar.

Satz 35.4 (Regularität)

Sei u : K Ñ R zweimal stetig differenzierbar mit ∆u “ 0 in K. Dann ist u
unendlich oft stetig differenzierbar.

Beweis: Man verwendet die Mittelwerteigenschaft aus Satz 35.3 mit einer
unendlich oft differenzierbaren Gewichtsfunktion φ und zeigt, dass alle
Ableitungen auf die Gewichtsfunktion φ ”fallen”.
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Potentialgleichung Eigenschaften harmonischer Funktionen

Die Mittelwerteigenschaft liefert das folgende wichtige Prinzip:

Satz 35.5 (Maximumprinzip für harmonische Funktionen)

K Ă R2 (oder R3) sei ein beschränktes Gebiet, u eine in K zweimal stetig
differenzierbare harmonische Funktion, die auf K definiert und stetig ist. Dann
nimmt u sein Maximum auf BK an.

Hieraus folgt schon die Eindeutigkeit der Lösung des Dirichlet-Problems:

Satz 35.6 (Eindeutigkeit)

Sei K ein beschränktes Gebiet (in R2 oder R3). Dann hat das Dirichlet-Problem

∆u “ 0 in K
upx⃗q “ gpx⃗q x P BK stetige Randbed.

mit stetiger Funktion g höchstens eine Lösung.

Beweis: Seien u1, u2 zwei Lösungen. Dann erfüllt die Differenz w :“ u1 ´ u2

1q ∆w “ 0 in K 2q wpx⃗q “ 0 für x P BK.

Nach dem Maximumprinzip gilt w “ 0, also u1 “ u2.
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Potentialgleichung Randwertprobleme

35.7 (Randwertprobleme)

Die folgenden Randwertprobleme werden gestellt:

(a) Dirichlet-Problem:

"

∆u “ 0 in K
upx⃗q “ gpx⃗q x P BK Randbed.

(b) Neumann-Problem:

#

∆u “ 0 in K
Bu

Bn⃗
px⃗q “ hpx⃗q x P BK Randbed.

(c) gemischtes Problem: mit a, b P R
#

∆u “ 0 pin Kq

aupx⃗q ` b
Bu

Bn⃗
px⃗q “ kpx⃗q x P BK Randbed.

Die Lösungsmethoden Methoden hängen stark vom Gebiet K ab.
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Potentialgleichung Dirichlet-Problem auf einer Kreisscheibe

35.8 (Dirichlet-Problem auf einer Kreisscheibe)

K Ă R2 sei die Kreisscheibe um 0 mit Radius r0 ą 0.
Das Dirichlet-Problem in Polarkoordinaten lautet

uxx ` uyy “ Urr `
1

r
Ur `

1

r2
Uφφ “ 0, 0 ă r ă r0, 0 ă φ ă 2π. (A)

Dabei ist upx, yq “ Upr, φq mit x “ r cosφ, y “ r sinφ.

Damit U wohldefiniert ist, verlangen wir

"

Up0, φq “ const, 0 ď φ ď 2π
Upr, 0q “ Upr, 2πq, 0 ă r ď r0.

pBq

Die Dirichlet-Randbedingung für px, yq P BK gibt schließlich

Upr0, φq “ gpφq, g ist 2π-periodisch. pCq
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Potentialgleichung Lösung des Dirichlet-Problems

Wir haben folgende Aussage hergeleitet:

Satz 35.9 (Lösung des Dirichlet-Problems)

Gegeben sei das Dirichlet-Problem auf der Kreisscheibe vom Radius r0 ą 0 um
den Nullpunkt. Die Randbedingung laute in Polarkoordinaten

Upr0, φq “ gpφq,

wobei g stetig und periodisch mit der Periode 2π sei und die Fourier-Reihe gegen
g konvergiere. Dann ist eine Lösung des Dirichlet-Problems gegeben durch

upx, yq “ Upr, φq “
1

2π

ż π

´π

gpθq
r20 ´ r2

r20 ` r2 ´ 2r0r cospθ ´ φq
dθ.

Das obige Integral nennt man das Poisson-Integral von g.
upx, yq ist eine harmonische Funktion im Innern der Kreisscheibe.

Es gilt
lim

rÑr0´
Upr, φq “ gpφq für alle φ .

A. Lamacz-Keymling Höhere Mathematik IV Sommer 25 542



Potentialgleichung Lösung des Dirichlet-Problems

Bemerkungen

(1) Für r “ 0 folgt sofort die Mittelwerteigenschaft I der harmonischen Funktion u:

up0, 0q “
1

2π

ż π

´π

Upr0, θq dθ.

(2) Man erkennt auch folgendermaßen, dass upx, yq harmonisch ist:
Mit z “ x ` iy “ reiφ gilt

upx, yq “
1

π

ż π

´π

gpθq

«

1

2
` Re

˜

8
ÿ

n“1

zn

rn0
e´inθ

¸ff

dθ

also ist u der Realteil einer holomorphen Funktion im Innern der Kreisscheibe (vgl.
Funktionentheorie)
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Potentialgleichung Kugelsymmetrische Funktionen

Wir betrachten hier beliebige Raumdimensionen n P N.

Definition 35.10 (Kugelsymmetrisches Randwertproblem)

Ein Randwertproblem der Form

∆upx⃗q “ fp|x⃗|q in K

upx⃗q “ gp|x⃗|q auf BK

auf rotationssymmetrischen Gebieten K Ă Rn heißt kugelsymmetrisches
Randwertproblem.

Rotationssymmetrische Gebiete sind etwa

Br “ tx⃗ P Rn | |x⃗| ă ru

BrzBs “ tx⃗ P Rn | s ă |x⃗| ă ru

Ansatz für die Lösung:

upx⃗q “ φp|x⃗|q, x⃗ P Kzt0u

mit einer Funktion φ : p0,8q Ñ R. Dann gilt mit r :“ |x⃗|

∆upx⃗q “ φ2prq `
n´ 1

r
φ1prq “ r1´n d

dr

`

rn´1φ1prq
˘
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Diffusionsgleichung

Kapitel 36 – Diffusionsgleichung
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Diffusionsgleichung Diffusionsgleichung

Diffusionsgleichung

Definition 36.1 (Diffusionsgleichung)

Gegeben sei ein Gebiet M Ă Rn und c ą 0. Sei u :M ˆ p0,8q eine (genügend oft
differenzierbare) Funktion des Ortes x⃗ P M sowie der Zeit t P p0,8q. Wir bilden
die partiellen Ableitungen ut nach der Zeitvariablen und ∆u nach der
Ortsvariablen.

u erfüllt die Wärmeleitungsgleichung oder Diffusionsgleichung (engl.
heat equation), wenn gilt

utpx⃗, tq ´ c2∆upx⃗, tq “ 0 für alle x⃗ P M, t P p0,8q.

Hierdurch wird oft die Temperaturverteilung in einem Körper modelliert.

Für x P R: Eine Funktion upx, tq mit ut ´ c2uxx “ 0 beschreibt die Spannung in
einem Kabel oder die Temperatur in einem dünnen Stab zur Zeit t ą 0.
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Diffusionsgleichung Die Diffusionsgleichung

Anfangs-und Randbedingungen

Die Temperaturverteilung zur Zeit t “ 0
ist bekannt:

upx⃗, 0q “ fpx⃗q, x⃗ P M, Anfangsbedingung

Die Temperatur oder der Wärmefluss am
Rand Γ “ BM des Gebietes sind bekannt,
also entweder

upx⃗, tq “ gpx⃗, tq, x⃗ P Γ, t ą 0, Dirichlet-Randbedingung

oder

Bu

Bn⃗
px⃗, tq “ gpx⃗, tq, x⃗ P Γ, t ą 0, Neumann-Randbedingung

L x

t

upx, 0q “ fpxq

uxp0, tq “ gptq

uxpL, tq “ hptq

ut “ c2uxx

oder
up0, tq “ gptq

oder
upL, tq “ hptq

Wiederholung: Bu
Bn⃗ ist die Richtungsableitung von u am Rand von M in Richtung

der äußeren Normalen.
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Diffusionsgleichung Anfangs-Randwertproblem zur Diffusionsgleichung

Lösung des Anfangs-Randwertproblem in 1D

Wir beschreiben die Lösung im eindimensionalen Fall.

Mit M “ p0, Lq (Stab der Länge L) lautet das Anfangs-Randwertproblem

$

’

’

&

’

’

%

utpx, tq ´ c2uxxpx, tq “ 0, x P p0, Lq, t ą 0
upx, 0q “ fpxq, x P p0, Lq, pAnfangsbedingungq

up0, tq “ gptq
upL, tq “ hptq

*

t ą 0, pDirichlet-Randbedingungq

oder
$

’

’

&

’

’

%

utpx, tq ´ c2uxxpx, tq “ 0, x P p0, Lq, t ą 0
upx, 0q “ fpxq, x P p0, Lq, pAnfangsbedingungq

uxp0, tq “ gptq
uxpL, tq “ hptq

*

t ą 0. pNeumann-Randbedingungq
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Diffusionsgleichung Grundlösungen der Diffusionsgleichung in r0, Ls ˆ r0, 8q

Satz 36.2 (Grundlösungen der Diffusionsgleichung)

Die Funktionen

ψspx, tq “ e´c2stpAs cosp
?
sxq `Bs sinp

?
sxqq mit s ą 0,

ψ0px, tq “ A0 `B0x, pfür s “ 0q,

sowie
ψspx, tq “ e´c2stpAse

?
|s|x `Bse

´
?

|s|xq mit s ă 0

erfüllen die Diffusionsgleichung ut ´ c2uxx “ 0.

Bemerkung: Die Funktionen ψs mit s ě 0 sind auf dem Definitionsbereich
r0, Ls ˆ r0,8q beschränkt.
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Diffusionsgleichung Lösung des Anfangs-Randwertproblems mit Dirichlet-Randbedingungen

Satz 36.3 (Lösung des Anfangs-Randwertproblems mit Dirichlet-Randbedingungen)

Das Anfangs-Randwertproblem

utpx, tq ´ c2uxxpx, tq “ 0, x P p0, Lq, t P p0,8q,

mit homogenen Dirichlet-Randbedingungen

up0, tq “ 0, upL, tq “ 0, t P p0,8q

wird zu jeder Anfangsbedingung

upx, 0q “ fpxq, x P p0, Lq,

mit quadrat-integrierbarer Funktion f gelöst durch die Funktion

upx, tq “

8
ÿ

k“1

bk sin

ˆ

kπ

L
x

˙

e´c2pkπ{Lq2t

mit den reellen Koeffizienten

bk “
2

L

ż L

0

fpxq sin

ˆ

kπ

L
x

˙

dx, k “ 1, 2, 3, . . .
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Diffusionsgleichung Eigenschaften der Lösung

Bemerkungen zur Konvergenz der Reihe:
Für t “ 0: Die Reihe konvergiert gegen f im Sinne der Konvergenz im quadratischen
Mittel. Falls f stetig ist, die Randbedingung fp0q “ fpLq “ 0 erfüllt und sogar stückweise
stetig differenzierbar ist, konvergiert die Reihe sogar punktweise gegen f .

Für t ą 0: Die Reihe konvergiert gleichmäßig gegen die stetige Funktion upx, tq: denn die
Koeffizienten bk sind beschränkt (sie bilden sogar eine Nullfolge wegen der
Parseval-Identität), also ist

8
ÿ

k“1

|bk|e´c2pkπ{Lq2t

eine konvergente Majorante. Man zeigt sogar:

Satz 36.4 (Eigenschaften der Lösung)

Die Lösung upx, tq der Diffusionsgleichung zu quadrat-integrierbarer
Anfangsbedingung upx, 0q “ fpxq und homogenen Dirichlet-Randbedingungen ist
im Streifen p0, Lq ˆ p0,8q beliebig oft stetig partiell differenzierbar. Es gilt

lim
tÑ8

upx, tq “ 0 für alle x P r0, Ls.

(Abkühlung des gesamten Stabes der Länge L auf 0 Grad.)
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Diffusionsgleichung Eigenschaften der Lösung
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A. Lamacz-Keymling Höhere Mathematik IV Sommer 25 552



Diffusionsgleichung Lösung des Anfangs-Randwertproblems mit Neumann-Randbedingungen

Satz 36.5 (Lösung des Anfangs-Randwertproblems mit Neumann-Randbedingungen)

Das Anfangs-Randwertproblem

utpx, tq ´ c2uxxpx, tq “ 0, x P p0, Lq, t P p0,8q,

mit homogenen Neumann-Randbedingungen

uxp0, tq “ 0, uxpL, tq “ 0, t P p0,8q

wird zu jeder Anfangsbedingung

upx, 0q “ fpxq, x P p0, Lq,

mit quadrat-integrierbarer Funktion f gelöst durch die Funktion

upx, tq “
a0
2

`

8
ÿ

k“1

ak cos

ˆ

kπ

L
x

˙

e´c2pkπ{Lq2t

mit den reellen Koeffizienten

ak “
2

L

ż L

0

fpxq cos

ˆ

kπ

L
x

˙

dx, k “ 0, 1, 2, . . .
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Diffusionsgleichung Eigenschaften der Lösung

Die Bemerkungen zur Konvergenz der Reihe gelten wie bei
Dirichlet-Randbedingungen.

Satz 36.6 (Eigenschaften der Lösung)

Die Lösung upx, tq der Diffusionsgleichung zu quadrat-integrierbarer
Anfangsbedingung up0, tq “ fpxq und homogenen Neumann-Randbedingungen ist
im Streifen r0, Ls ˆ p0,8q beliebig oft stetig partiell differenzierbar. Es gilt

lim
tÑ8

upx, tq “
a0
2

“
1

L

ż L

0

fpxq dx für alle x P r0, Ls.

(Temperaturausgleich entlang des Stabes der Länge L auf den Mittelwert der
Anfangstemperatur.)
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Diffusionsgleichung Eigenschaften der Lösung
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Diffusionsgleichung Parabolisches Maximumprinzip

Wie die Laplace-Gleichung erfüllt auch die Diffusionsgleichung ein
Maximumprinzip.

Notation: Für ein Gebiet M Ă Rn und T ą 0 definieren wir

MT :“ M ˆ p0, T q den Raum-Zeit-Zylinder

Γ :“ pBM ˆ r0, T sq Y pM ˆ t0uq den parabolischen Rand

Satz 36.7 (Parabolisches Maximumprinzip)

Sei M Ă Rn ein beschränktes Gebiet und sei u eine auf MT zweimal stetig
differenzierbare und auf MT stetige Funktion, die die Diffusionsgleichung

Btu´ c2∆u “ 0 in MT

erfüllt. Dann nimmt u sein Maximum auf dem parabolischen Rand Γ an.
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Diffusionsgleichung Inhomogene Randbedingungen

Wie können inhomogene Randbedingungen realisiert werden?

Antwort: Mit Hilfe der allgemeinen Grundlösungen ψs und ηs in ??. Dabei
verwenden wir nur die beschränkten Grundlösungen mit s ě 0.
Zunächst werden Dirichlet-Randbedingungen behandelt:

Satz 36.8

(i) Falls die Funktion h die Darstellung als Parameterintegral

hptq “

ż 8

0

Bpsq sinp
?
sLqe´c2st ds,

mit einer stetigen und beschränkten Funktion B besitzt, so ist

uRpx, tq “

ż 8

0

Bpsq sinp
?
sxqe´c2st ds

eine Lösung der Diffusionsgleichung zu den Randwerten

up0, tq “ 0, upL, tq “ hptq, t ą 0.
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Diffusionsgleichung Inhomogene Randbedingungen

(ii) Falls die Funktion g die Darstellung als Parameterintegral

gptq “

ż 8

0

Apsq sinp
?
sLqe´c2st ds,

mit einer stetigen und beschränkten Funktion A besitzt, so ist

uLpx, tq “

ż 8

0

Apsq sinp
?
spL´ xqqe´c2st ds

eine Lösung der Diffusionsgleichung zu den Randwerten

up0, tq “ gptq, upL, tq “ 0, t ą 0.

Bemerkung:

Ersetzt man jeweils sin durch cos, erhält man Lösungen mit inhomogenen
Neumann-Randbedingungen.

Statt des Parameterintegrals kann auch eine endliche Summe oder unendliche
Reihe solcher Grundlösungen vorliegen.
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Diffusionsgleichung Diffusionsgleichung mit inhomogenen Randbedingungen

Zusammensetzen der Lösung (Superposition):

Satz 36.9 (Diffusionsgleichung mit inhomogenen Randbedingungen)

Die Diffusionsgleichung mit der Anfangsbedingung upx, 0q “ fpxq und
inhomogenen Randbedingungen

R0pu; tq “ αup0, tq ` βuxp0, tq “ gptq,

RLpu; tq “ γupL, tq ` δuxpL, tq “ hptq

wird wie folgt gelöst:
1. Bestimme eine Lösung uR der Diffusionsgleichung zu den Randwerten R0pu; tq “ 0,

RLpu; tq “ hptq. (ohne Anfangsbedingung)

2. Bestimme eine Lösung uL der Diffusionsgleichung zu den Randwerten R0pu; tq “ gptq,
RLpu; tq “ 0. (ohne Anfangsbedingung)

3. Bestimme die (eindeutige) Lösung uA der Anfangs-Randwertaufgabe zu den homogenen
Randwerten R0pu; tq “ RLpu; tq “ 0 und der Anfangsbedingung

upx, 0q “ fpxq ´ uRpx, 0q ´ uLpx, 0q.

Die Gesamtlösung ist dann u “ uA ` uR ` uL.
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Diffusionsgleichung Diffusionsgleichung mit inhomogenen Randbedingungen

Zur Durchführung des 1. Schrittes (inhomogene RB am rechten Rand) ist es
erforderlich, die Funktion hptq als Parameterintegral

hptq “

ż 8

0

Bpsq sinp
?
sLq

looooooomooooooon

“:F psq

e´c2st ds

darzustellen. Dieses Integral beschreibt die Laplace-Transformation einer
gesuchten Funktion F psq “ Bpsq sinp

?
sLq.
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Wellengleichung

Kapitel 37 – Wellengleichung
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Wellengleichung Wellengleichung

Die Wellengleichung

Definition 37.1 (Wellengleichung)

Gegeben sei ein Gebiet M Ă Rn und c ą 0. Sei u :M ˆ p0,8q eine (genügend oft
differenzierbare) Funktion des Ortes x⃗ P M sowie der Zeit t P p0,8q. Wir bilden
die partiellen Ableitungen ut, utt nach der Zeitvariablen und ∆u nach der
Ortsvariablen.

u erfüllt die Wellengleichung (engl. wave equation), wenn gilt

uttpx⃗, tq ´ c2∆upx⃗, tq “ 0 für alle x⃗ P M, t P p0,8q.

Hierdurch wird oft die Ausbreitung von Wellen in der Akustik, Elektrotechnik etc.
modelliert., z.B. schwingende Saiten eines Instruments oder eine schwingende
Membran.

Im Folgenden wird der Fall n “ 1, also x⃗ “ x P R exemplarisch behandelt.

Zwei Fälle:

M “ R, also keine Ränder
M “ p0, Lq, zusätzliche Randbedingungen in x “ 0 und x “ L
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Wellengleichung Cauchyproblem

Satz 37.2 (Allgemeine Lösung im Ganzraum)

Die allgemeine Lösung der Wellengleichung

utt ´ c2uxx “ 0, x P R, t ą 0

hat die Form
upx, tq “ h1px` ctq ` h2px´ ctq

mit zweimal differenzierbaren reellen Funktionen h1 und h2.
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Wellengleichung Cauchyproblem der Wellengleichung

Satz 37.3 (Lösung der Wellengleichung im Ganzraum)

Das Cauchyproblem
utt “ c2uxx, x P R, t ą 0

upx, 0q “ f1pxq, utpx, 0q “ f2pxq

hat die (eindeutige) Lösung

upx, tq “
1

2
pf1px` ctq ` f1px´ ctqq `

1

2c

ż x`ct

x´ct

f2pξq dξ.

Die obige Darstellung der Lösung heißt d’Alembert’sche Formel.

t

xx´ ct x` ct

px, tq

Der Wert der Lösung u im Punkt px, tq
hängt ab

(1) von den Werten der Funktion f1 in
den Punkten x˘ ct

(2) von der Werten der Funktion f2 im
Intervall rx´ ct, x` cts.
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Wellengleichung Cauchyproblem der Wellengleichung

Bemerkungen:

Die Lösung upx, tq der Wellengleichung hat für t ą 0 keine höhere
“Glattheit” als die 1. Anfangsbedingung: Hat f1 einen Sprung bei x1, so hat
upx, tq (für festes t) im allgemeinen zwei Sprünge bei x1 ` ct und x1 ´ ct.

Sprünge in der 2. Anfangsbedingung f2 liefern i.a. noch stetige Lösungen:
Hat f2 einen Sprung bei x2, so entsteht durch die Integration eine stetige
Funktion, die an den Stellen x2 ˘ ct nicht differenzierbar ist (“Kanten” in
upx, tq).

Wachstum von upx, tq:

Im Fall f2 “ 0 ist |upx, tq| ď }f1}8 für alle t ą 0.

Im allgemeinen Fall gilt

|upx, tq| ď }f1}8 ` t}f2}8, 0 ă t ă 2L{c.

D.h. die Welle kann mit wachsender Zeit 0 ă t ă 2L{c linear anschwellen.
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Wellengleichung Anfangs-Randwertproblem zur Wellengleichung

37.4 (Anfangs-Randwertproblem zur Wellengleichung in 1D)

Sei M “ p0, Lq ein beschränktes Intervall im R. Gesucht ist eine Funktion u, die die
Wellengleichung

utt ´ c2uxx “ 0 in p0, Lq ˆ p0,8q pmit c ą 0q,

sowie eine der beiden Anfangs-Randbedingungen erfüllt:

$

’

’

&

’

’

%

upx, 0q “ f1pxq, x P p0, Lq, p1. Anfangsbedingungq

utpx, 0q “ f2pxq, x P p0, Lq, p2. Anfangsbedingungq

up0, tq “ gptq
upL, tq “ hptq

*

t ą 0, pDirichlet-Randbedingungq

oder
$

’

’

&

’

’

%

upx, 0q “ f1pxq, x P p0, Lq, p1. Anfangsbedingungq

utpx, 0q “ f2pxq, x P p0, Lq, p2. Anfangsbedingungq

uxp0, tq “ gptq
uxpL, tq “ hptq

*

t ą 0. pNeumann-Randbedingungq
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Wellengleichung Grundlösungen der Wellengleichung in r0, Ls ˆ r0, 8q

Man erhält ganz analog zur Diffusionsgleichung die folgenden Lösungen der
Wellengleichung (ohne Berücksichtigung von Anfangs- und Randbedingungen):

Satz 37.5 (Grundlösungen der Wellengleichung)

Es sei µ P R, s “
a

|µ|{c. Dann lösen die Funktionen

ψspx, tq “ c1 cos psxq cos psctq ` c2 cos psxq sin psctq `

c3 sin psxq cos psctq ` c4 sin psxq sin psctq

“ C1 cos pspx` ctqq ` C2 sin pspx` ctqq

`C3 cos pspx´ ctqq ` C4 sin pspx´ ctqq für µ ă 0,

ψ0px, tq “ c1 ` c2x` c3t` c4xt

“ C1 ` C2px` ctq ` C3px´ ctq ` C4rpx` ctq2 ´ px´ ctq2s für µ “ 0

sowie

ψspx, tq “ C1e
spx`ctq

` C2e
´spx`ctq

` C3e
spx´ctq

` C4e
´spx´ctq für µ ą 0

die Wellengleichung utt ´ c2uxx “ 0.
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Wellengleichung
Lösung zum Anfangs-Randwertproblem mit homogenen

Dirichlet-Randbedingungen

Durch Überlagerung der periodischen beschränkten Grundlösungen erhält man

Satz 37.6 (Lösung zum ARWP mit homogene Dirichlet-Randbedingungen)

Die Funktionen f1 und f2 werden ungerade fortgesetzt und in eine Sinusreihe
entwickelt:

f1pxq “

8
ÿ

k“1

ak sin
kπx

L
und f2pxq “

8
ÿ

k“1

bk sin
kπx

L
.

Dann ist die Lösung des Anfangsrandwertproblems mit homogenen
Dirichlet-Randbedingungen gegeben durch

upx, tq “

8
ÿ

k“1

´

ak cos
kπct

L
` bk

L

kπc
sin

kπct

L

¯

sin
kπx

L
.

A. Lamacz-Keymling Höhere Mathematik IV Sommer 25 568



Wellengleichung Lösung zum ARWP mit homogenen Neumann-Randbedingungen

Analoge Formeln für die Neumann-Randbedingungen erhält man aus:

Satz 37.7 (Lösung zum ARWP mit homogene Neumann-Randbedingungen)

Die Grundlösungen der Wellengleichung mit homogenen
Neumann-Randbedingungen sind

ψ0px, tq “ c1 ` c2t,

sowie

ψkpx, tq “ cos

ˆ

kπx

L

˙ ˆ

c1 cos

ˆ

kπct

L

˙

` c2 sin

ˆ

kπct

L

˙˙

, k “ 1, 2, 3, . . .

Die Anfangsbedingungen upx, 0q “ f1pxq, utpx, 0q “ f2pxq werden durch
Überlagerung mit den Koeffizienten der Cosinus-Reihen von f1 und f2 gebildet;
hier müssen die Funktionen also gerade fortgesetzt werden zur Periodenlänge 2L.
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Distributionen

Kapitel 38 – Distributionen
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Distributionen Bezeichnungen

Bezeichnungen

Definition 38.1

Sei K Ă Rn kompakt, Ω Ă Rn offen.

der Träger einer Funktion (englisch ”support”) ist definiert durch

suppφ “ tx⃗ P Rn | φpx⃗q ‰ 0u

CcpΩq ist der Raum aller stetigen Funktionen φ : Ω Ñ C mit kompaktem
Träger.

C8pΩq ist der Raum aller Funktionen φ : Ω Ñ C, die unendlich oft
differenzierbar sind.

der Raum der Testfunktionen ist

DpΩq :“ C8
c pΩq :“ C8pΩq X CcpΩq.
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Distributionen Motivation

Motivation

Die Fundamentallösung Φ : Rnzt⃗0u Ñ R mit n ě 2 ist definiert durch

Φpx⃗q :“

#

´ 1
2ω2

lnp|x⃗|q für n “ 2,
1

npn´2qωn
|x⃗|´pn´2q für n ě 3.

Wissen schon (aus der Übung):

∇Φpx⃗q “ ´ 1
nωn

x⃗
|x⃗|

1
|x⃗|n´1 “ ´ 1

|BB|x⃗||
x⃗

|x⃗|
,

´∆Φ “ 0.

Frage: Lässt sich ´∆Φ auf ganz Rn interpretieren?

Antwort: Betrachte dazu Ψ P DpRnq. Dann gilt

lim
ϵÑ0

ż

RnzBϵ

∇Φ ¨ ∇Ψ dx⃗ “ Ψp⃗0q.

In diesem Sinne:
´∆Φ “ δ0 mit δ0pΨq “ Ψp0q.
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Distributionen Distributionen

Definition 38.2 (Distributionen)

Eine Distribution auf Ω ist eine lineare Abbildung von DpΩq nach C, die
zusätzliche Stetigkeitseigenschaften besitzt.

Die Menge der Distributionen auf Ω wird mit D1pΩq bezeichnet.

Genauer: Eine lineare Abbildung u : DpΩq Ñ C erfüllt die obige
Stetigkeitseigenschaft, wenn zu jeder kompakten Menge K Ă Ω ein c “ cpKq ą 0
und ein m “ mpKq P N0 existieren, so dass:

|upϕq| ď c}φ}CmpΩq

für alle φ P DpΩq mit supp φ Ă K.

38.3 (Beispiele)

δ0 : DpRnq Ñ R mit δ0pϕq “ φp0q.

ϵj : DpRnq Ñ R mit ϵjpφq “ Bjφp0q für j “ 1, . . . , n.

Sei f : Rn Ñ R lokal integrierbar, d.h. f P L1pKq für jede kompakte Menge
K Ă Rn. Dann ist xfy mit xfypφq :“

ş

Rn fφ dx⃗ eine Distribution.
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Distributionen Differentiation von Distributionen

Vorüberlegung: Sei f P C1pRnq so, dass f und Bjf absolut integrierbar sind und

xfypφq “

ż

Rn

fφ dx⃗.

Dann gilt mit partieller Integration

xBjfypφq “

ż

Rn

Bjfφ dx⃗ “ ´

ż

Rn

fBjφdx⃗ “ ´xfypBjφq.

Definition 38.4

Ist u P D1pΩq eine Distribution und φ P DpΩq eine Testfunktion, so definiert man

pBjuq pφq :“ ´u pBjfq .

Konsequenz: in diesem Sinn sind Distributionen beliebig oft differenzierbar. Die
partiellen Ableitungen sind stets vertauschbar.
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Distributionen Konvergenz von Distributionen

Definition 38.5 (Konvergenz von Distributionen)

Eine Folge von Distributionen uk in D1pΩq konvergiert gegen eine Distribution
u P D1pΩq, wenn für alle Testfunktionen φ P DpΩq gilt:

ukpφq Ñ upφq für k Ñ 8.

Wie schreiben dann uk Ñ u in D1pΩq.

Beispiele:

1) Sei ak eine Folge in Rn mit ak Ñ a P Rn. Dann gilt δak Ñ δa in D1pRnq.

2) Es gelte ak Ñ a in R. Sei Hak die verschobene Heaviside-Funktion gegeben
durch Hakpxq :“ Hpx´ akq. Dann gilt

xHaky Ñ xHay in D1pRq.

3) Seien fk, f : Rn Ñ R absolut integrierbar mit
ş

Rn |fk ´ f | dx⃗ Ñ 0 für
k Ñ 8. Dann gilt

xfky Ñ xfy in D1pRnq.
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Distributionen Dirac-Folge, Dirac-Familie

Definition 38.6 (Dirac-Folge)

Eine Folge pψkqkPN absolut integrierbarer Funktionen ψk : Rn Ñ R heißt
Dirac-Folge, wen für alle k P N gilt

1) ψkpx⃗q ě 0 für alle x⃗ P Rn,
2)

ş

Rn ψkpx⃗q dx⃗ “ 1,

3) Für alle δ ą 0 ist lim
kÑ8

ż

RnzBδ

ψkpx⃗q dx⃗ “ 0

Für Dirac-Folgen gilt die folgende distributionelle Konvergenz.

Satz 38.7 (Distributionelle Konvergenz von Dirac-Folgen)

Für Dirac-Folgen ψk gilt
xψky Ñ δ0 in D1pRnq.
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Distributionen Fundamentallösung der Laplace-Gleichung

Zurück zur Fundamentallösung

Φpx⃗q :“

#

´ 1
2ω2

lnp|x⃗|q für n “ 2,
1

npn´2qωn
|x⃗|´pn´2q für n ě 3.

Beachte: Der Wert Φp⃗0q spielt keine Rolle und kann beliebig gewählt werden, da
t⃗0u eine Nullmenge ist.

Satz 38.8 (Lokale Integrierbarkeit)

Die Funktionen Φ und ∇Φ sind lokal integrierbar auf Rn.

Mit der Rechnung am Anfang des Kapitels folgt die folgende Lösungseigenschaft
von Φ.

Satz 38.9 (Lösungseigenschaft der Fundamentallösung)

Die Fundamentallösung Φ löst die Poisson-Gleichung

´∆xΦy “ δ0

im Distributionssinn auf Rn. Man schreibt auch kurz ´∆Φ “ δ0.
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Distributionen Lösung der Poisson-Gleichung auf Rn

Mit Hilfe der Fundamentallösung Φ lassen sich Lösungen der Poissongleichung als
Faltung darstellen.

Satz 38.10 (Lösungseigenschaft der Faltung)

Sei f P DpRnq. Dann löst die Funktion

upx⃗q “ pΦ ˚ fqpx⃗q “

ż

Rn

fpy⃗qΦpx⃗´ y⃗q dy⃗

die Poissongleichung ´∆u “ f im Distributionssinn auf Rn.

Bemerkung: Die Funktion u ist unendlich oft differenzierbar.

Beweisidee (nur formal):

´∆ux⃗px⃗q “ ´∆x⃗

ˆ
ż

Rn

fpy⃗qΦpx⃗´ y⃗q dy⃗

˙

“

ż

Rn

fpy⃗q p´∆x⃗Φpx⃗´ y⃗qq dy⃗

“

ż

Rn

fpy⃗q p´∆y⃗Φpy⃗ ´ x⃗qq dy⃗ “ δx⃗pfq “ fpx⃗q.
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Distributionen Lösung der Poisson-Gleichung auf Rn

Speziell im Fall n “ 3 erhält man die folgende Darstellungsformel.

Satz 38.11 (Lösung der Poisson-Gleichung im R3)

Sei f P DpR3q. Dann löst die Funktion

upx⃗q “
1

4π

ż

R3

1

|x⃗´ y⃗|
fpy⃗q dy⃗

die Poisson-Gleichung ´∆u “ f im R3.

Ausblick: Die Formel aus Satz ?? ist nur im Ganzraum R3 gültig. Für
Randwertprobleme auf beschränkten Gebieten nutzt man die Idee der
Green’schen Funktion.

Dirichlet-Problem: Sei Ω Ă R3 ein beschränktes Gebiet. Gesucht ist eine Lösung
des Problems

´∆u “ f in Ω,

upx⃗q “ 0 x⃗ P BΩ
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Distributionen Greensche Funktion

Greensche Funktion

Definition 38.12 (Green’sche Funktion)

Eine Funktion G : Ω̄ ˆ Ω Ñ R heißt Green’sche Funktion zum Gebiet Ω,
falls

1) Für jedes x⃗ P Ω:

´∆y⃗Gpx⃗, y⃗q “ δx⃗

im Distributionssinn auf Ω.

2) Für alle x⃗ P BΩ:

Gpx⃗, y⃗q “ 0 für alle y⃗ P Ω.

Für einige Gebiete wie

Kugeln

Halbräume, also z.B. Ω “ R2 ˆ p0,8q

kann die Green’sche Funktion explizit angegeben werden.
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Distributionen Greensche Funktion

Eine Green’sche Funktion erlaubt die Darstellung von Lösungen von
Dirichlet-Problemen. Wir beschränken uns hier auf n “ 3. Die Resultate bleiben
auch in anderen Dimensionen gültig.

Satz 38.13 (Darstellungsformel für Dirichlet-Probleme)

Sei Ω Ă R3 ein beschränktes Gebiet und G eine Green’sche Funktion für Ω. Dann
löst

upx⃗q “

ż

Ω

Gpx⃗, y⃗qfpy⃗q dy⃗

das Dirichlet-Problem

´∆u “ f in Ω,

upx⃗q “ 0 x⃗ P BΩ.
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