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Potentialgleichung Potentialgleichung

Ziel: Modelliere die Warmeausbreitung in einem Gebiet K < R™ mit n = 2 oder n = 3.

Variablen:
@ u: K — R die Temperaturverteilung

@ j: K — R" der Wirmefluss (in welche Richtung wird Wirmeenergie transportiert
und wie viel)

Gleichungen:

@ Sei V < K ein beliebiges Volumen mit duBerem Normalenvektor 7. Da sich die
Wairmeverteilung nicht dndert, wird insgesamt keine Warmeenergie in das Volumen
V hineintransportiert, d.h. (im Fall n = 3)

J joAds =02 J divjd(z,y,2) = 0
v %
Da V < K beliebig war, gilt

divj=0 inK

@ Wairmeenergie stromt von warmeren in kiltere Regionen, mit einer Flussrate, die
proportional zum Temperaturgradienten ist,

j= —aVu in K
Dabei ist a > 0 die Leitfdhigkeit des Materials.
@ Insgesamt: div(—aVu) =0 < Au=0in K.
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Potentialgleichung Potentialgleichung

Definition 35.1 (Potentialgleichung)
Die POTENTIALGLEICHUNG oder LAPLACE-GLEICHUNG lautet

Au=0 inK

Die Lésungen der Potentialgleichung heiBen HARMONISCHE FUNKTIONEN.

Als Verallgemeinerung betrachtet man auch die PO1SSON-GLEICHUNG
(inhomogene Laplace-Gleichung)

Au=f

Die Gleichung wird auf einem Gebiet K — R? oder R? betrachtet.

o Der Rand 0K besteht aus endlich vielen reguliren Kurven (G < R?) oder
orientierten Flichenstiicken (G = R3).

@ 7: sei der duBere Normalenvektor auf K (mit Lange 1)
ou

® i

= Vu - 71 sei die Richtungsableitung nach der duBeren Normalen
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Potentialgleichung Eigenschaften harmonischer Funktionen

Harmonische Funktionen haben besondere Eigenschaften. Wir formulieren diese in
Dimension n = 3. Sie gelten entsprechend auch fiir n = 2.

Satz 35.2 (Mittelwerteigenschaft 1)

Sei u : K — R zweimal stetig differenzierbar mit Au = 0 in K. Dann gilt

1
u(Z) = udS
10B.(3)| Jom, (@)
fiir jede Kugel B,.(Z) = {f € R®||Z — ¢ < r} mit B, (%) c K.
Dabei ist |0B,(Z)| = SaBT(f) 1dS.

Beweis: Definiere die Funktion

1
d(r) := udS
)= EB @ s o

und zeige, dass ®'(r) = 0. Folglich gilt
O(r) = lim ®(s) = u(Z).

s—0+
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Potentialgleichung Eigenschaften harmonischer Funktionen

Satz 35.3 (Mittelwerteigenschaft I1)

Sei u : K — R zweimal stetig differenzierbar mit Au = 0 in K und B,.(Z) c K.

Sei weiterhin ¢ : [0,7] — R eine integrierbare Gewichtsfunktion mit
S5 ©) o(|@|) dZ = 1. Dann gilt

Der Beweis verwendet die ZWIEBELINTEGRATION und Satz 35.2, wonach (in
Dimension n = 3)

u(y y — Z|) dy = ' W@+ s2)p(s)dS(Z) s ds
er @l — ) di - | Lw (& + 5)p(s) dS(2)
= L u()|0B1(0)|¢(s)s? ds

— u(@) fB £ a7 = @)
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Potentialgleichung Eigenschaften harmonischer Funktionen

Harmonische Funktionen sind unendlich oft differenzierbar.

Satz 35.4 (Regularitit)

Seiu : K — R zweimal stetig differenzierbar mit Au = 0 in K. Dann ist u
unendlich oft stetig differenzierbar.

Beweis: Man verwendet die Mittelwerteigenschaft aus Satz 35.3 mit einer
unendlich oft differenzierbaren Gewichtsfunktion ¢ und zeigt, dass alle
Ableitungen auf die Gewichtsfunktion ¢ "fallen”.
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Potentialgleichung Eigenschaften harmonischer Funktionen

Die Mittelwerteigenschaft liefert das folgende wichtige Prinzip:

Satz 35.5 (Maximumprinzip fiir harmonische Funktionen)

K < R? (oder R?) sei ein beschrinktes Gebiet, u eine in K zweimal stetig

differenzierbare harmonische Funktion, die auf K definiert und stetig ist. Dann

nimmt w sein Maximum auf 0K an.

Hieraus folgt schon die Eindeutigkeit der Losung des Dirichlet-Problems:

Satz 35.6 (Eindeutigkeit)

Sei K ein beschrinktes Gebiet (in R? oder R3). Dann hat das Dirichlet-Problem

Au=0 in K
u(®) = g(%) x € 0K stetige Randbed.

mit stetiger Funktion g héchstens eine Lésung.

Beweis: Seien uq, us zwei Losungen. Dann erfiillt die Differenz w := u; — us
1) Aw=0 inK 2) w(Z) =0 firxe oK.

Nach dem Maximumprinzip gilt w = 0, also u; = us.
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Potentialgleichung Randwertprobleme

35.7 (Randwertprobleme)

Die folgenden Randwertprobleme werden gestellt:

(a) DIRICHLET-PROBLEM:

Ay =0 in K
u() =g(@) xedK Randbed.

(b) NEUMANN-PROBLEM:

Au =0 in K
%(f) =h(Z) xzedK Randbed.
7

(c) GEMISCHTES PROBLEM: mit a,b e R

Au =0 (in K)
au(Z) + b%(f) =k(Z) xzedK Randbed.
n

Die Losungsmethoden Methoden hangen stark vom Gebiet K ab.
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Potentialgleichung Dirichlet-Problem auf einer Kreisscheibe

35.8 (Dirichlet-Problem auf einer Kreisscheibe)

K < R? sei die Kreisscheibe um 0 mit Radius roy > 0.
Das Dirichlet-Problem in Polarkoordinaten lautet

1 1
um+uyy=UM+;UT+r—2U¢¢=0, 0<r<ry 0<¢p<2m. (A)

Dabei ist u(xz,y) = U(r,p) mit x =rcosp, y=rsingp.

Damit U wohldefiniert ist, verlangen wir

U(0, ) = const, 0<p<2rm (B)
U(r,0) = U(r,27), 0<r<ry.

Die Dirichlet-Randbedingung fiir (x,y) € 0K gibt schlieBlich

Ulro,¢) = g(p), g ist 2m-periodisch. ()
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Potentialgleichung Losung des Dirichlet-Problems

Wir haben folgende Aussage hergeleitet:

Satz 35.9 (Lésung des Dirichlet-Problems)

Gegeben sei das Dirichlet-Problem auf der Kreisscheibe vom Radius ro > 0 um

den Nullpunkt. Die Randbedingung laute in Polarkoordinaten

U(ro, ) = g(),

wobei g stetig und periodisch mit der Periode 27 sei und die Fourier-Reihe gegen

g konvergiere. Dann ist eine Loésung des Dirichlet-Problems gegeben durch

1 (™ r3 —r?
u(@,y) = Ulr¢) = 2 f_ﬂg(e) r3 + 12 — 2rorcos( — @) d0-
Das obige Integral nennt man das POISSON-INTEGRAL von g.
u(x,y) ist eine harmonische Funktion im Innern der Kreisscheibe.
Es gilt
lim U(r,¢) = g(p) fiiralle p.

r—rg—
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Potentialgleichung Losung des Dirichlet-Problems
Bemerkungen
(1) Fiir r = 0 folgt sofort die Mittelwerteigenschaft | der harmonischen Funktion w:

1 ™

u(0,0) = o U(ro, 6) d6.

-

(2) Man erkennt auch folgendermaBen, dass u(z,y) harmonisch ist:
Mit z = x + iy = re'? gilt

1 (" 1 2t in
u(x,y):;f g(0) [2+Re (Z %e 6)}(10
- n=1'0

also ist u der Realteil einer holomorphen Funktion im Innern der Kreisscheibe (vgl.
Funktionentheorie)
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Potentialgleichung Kugelsymmetrische Funktionen

Wir betrachten hier beliebige Raumdimensionen n € N.

Definition 35.10 (Kugelsymmetrisches Randwertproblem)

Ein Randwertproblem der Form

auf rotationssymmetrischen Gebieten K < R" heift KUGELSYMMETRISCHES
RANDWERTPROBLEM.

Rotationssymmetrische Gebiete sind etwa
o B, ={FeR"[[7] <r}
@ B\B; ={FfeR"|s< |¥] <r}

Ansatz fiir die Losung:

w(@) = (7)), ¥e K\{0}

mit einer Funktion ¢ : (0,00) — R. Dann gilt mit r := |Z|

Au(@) = (1) + Tl ) = P (A ()
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Diffusionsgleichung Diffusionsgleichung

Diffusionsgleichung

Definition 36.1 (Diffusionsgleichung)

Gegeben sei ein Gebiet M < R™ und ¢ > 0. Sei u : M x (0, 0) eine (geniigend oft
differenzierbare) Funktion des Ortes & € M sowie der Zeit t € (0,00). Wir bilden
die partiellen Ableitungen u; nach der Zeitvariablen und Aw nach der
Ortsvariablen.

u erfiillt die WARMELEITUNGSGLEICHUNG oder DIFFUSIONSGLEICHUNG (engl.
heat equation), wenn gilt

ug(Z,1) — Au(Z,t) = 0 fir alle #e M, t e (0,0).

Hierdurch wird oft die Temperaturverteilung in einem Kérper modelliert.

Fiir « € R: Eine Funktion u(z,t) mit u; — g, = 0 beschreibt die Spannung in
einem Kabel oder die Temperatur in einem diinnen Stab zur Zeit t > 0.
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Diffusionsgleichung Die Diffusionsgleichung

Anfangs-und Randbedingungen

o Die Temperaturverteilung zur Zeit t = 0 u(l,t) = hét)

ist bekannt: uq(L,t) = ?L(?)r
u(0,t) = g(t

u(Z,0) = f(&), Ze M, Anfangsbedingung éer Iz

O

ug(0,1) = g(t)
4/ up = gy
o Die Temperatur oder der Warmefluss am -

Rand T = M des Gebietes sind bekannt, b Lo
u(z,0) = f(x)
also entweder

u(Z,t) = g(&,1), Zel, t>0, Dirichlet-Randbedingung

oder

0
a—qf(f, t) = g(Z,t), ZeTl, t >0, Neumann-Randbedingung

7
Wiederholung: g—% ist die Richtungsableitung von v am Rand von M in Richtung
der duBeren Normalen.
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Anfangs-Randwertproblem zur Diffusionsgleichung

Diffusionsgleichung

Losung des Anfangs-Randwertproblem in 1D

Wir beschreiben die Lésung im eindimensionalen Fall.

Mit M = (0, L) (Stab der Linge L) lautet das Anfangs-Randwertproblem

ue(z,t) — Cuga(x,t) =0, ze (0,L), t>0
u(z,0) = f(x), z € (0,L), (Anfangsbedingung)
u(0,t) = g(t) iy .
(L, ) — h(b) t>0, (Dirichlet-Randbedingung)

oder

ue (2, t) — Cuge(z,t) = 0, ze(0,L), t>0
u(z,0) = f(x), z € (0,L), (Anfangsbedingung)
uz(0,1) = g(t) -
wa(L,t) = h(t) t>0. (Neumann-Randbedingung)
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Diffusionsgleichung Grundl& der Diffusi leichung in [0, L] x [0, o0)

Satz 36.2 (Grundlésungen der Diffusionsgleichung)

Die Funktionen
bs(2,t) = e (A, cos(v/s1) + By sin(v/s5z)) mit s> 0,

’L/)o(x,t) = Ao + By, (fur s = 0),

sowie

Ys(z,t) = 6_028t(A56 lsle 1. Bse_\/mx) mit s <0

erfiillen die Diffusionsgleichung u; — c?ugy = 0.

Bemerkung: Die Funktionen ¢3 mit s > 0 sind auf dem Definitionsbereich
[0, L] x [0,0) beschrankt.
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Diffusionsgleichung Losung des Anfangs-Randwertprobl: mit Dirichlet-Randbedi

Satz 36.3 (Lésung des Anfangs-Randwertproblems mit Dirichlet-Randbedingungen)
Das Anfangs-Randwertproblem
ue(z,t) — czum(m,t) =0, ze€ (0,L), te(0,00),
mit homogenen Dirichlet-Randbedingungen
u(0,t) =0, wu(L,t) =0, t € (0,00)
wird zu jeder Anfangsbedingung
u(z,0) = f(x), z € (0,L),

mit quadrat-integrierbarer Funktion f gelést durch die Funktion

0
k —C Uy
u(zw,t) = Z by, sin (%x) o G
k=1

mit den reellen Koeffizienten

2 km
bk:fL f(x)sm(fx) dz, k=1,2,3,...
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Diffusionsgleichung Eigenschaften der Lésung

Bemerkungen zur Konvergenz der Reihe:

@ Fiir t = 0: Die Reihe konvergiert gegen f im Sinne der Konvergenz im quadratischen
Mittel. Falls f stetig ist, die Randbedingung f(0) = f(L) = 0 erfiillt und sogar stiickweise
stetig differenzierbar ist, konvergiert die Reihe sogar punktweise gegen f.

@ Fiir t > 0: Die Reihe konvergiert gleichmaBig gegen die stetige Funktion u(z,t): denn die
Koeffizienten by, sind beschrinkt (sie bilden sogar eine Nullfolge wegen der

Parseval-ldentitét), also ist
0

Z |bk|efc2(k7r/L)2t
k=1
eine konvergente Majorante. Man zeigt sogar:

Satz 36.4 (Eigenschaften der Losung)

Die Lésung u(x,t) der Diffusionsgleichung zu quadrat-integrierbarer
Anfangsbedingung u(x,0) = f(x) und homogenen Dirichlet-Randbedingungen ist
im Streifen (0, L) x (0,00) beliebig oft stetig partiell differenzierbar. Es gilt

lim u(z,t) =0 fiir alle x € [0, L].

t—o0

(Abkiihlung des gesamten Stabes der Lange L auf 0 Grad.)
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Diffusionsgleichung Eigenschaften der Lésung
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Diffusionsgleichung Lésung des Anfangs-Randwertproblems mit N
Satz 36.5 (Lésung des Anfangs-Randwertproblems mit Neumann-Randbedingungen)
Das Anfangs-Randwertproblem
we(x,t) — Cuge(x,t) = 0, z € (0,L), te (0,00),
mit homogenen Neumann-Randbedingungen
ug(0,8) =0, wuz(L,t) =0, t € (0,00)
wird zu jeder Anfangsbedingung
u(z,0) = f(x), z € (0,L),

mit quadrat-integrierbarer Funktion f gelést durch die Funktion

o]

k _ 2 2

u(z,t) = %o 4k 2 ay, Cos (—me) e~ ¢ (kr/L)7t
k=1

mit den reellen Koeffizienten

a —szf()cos i d k=0,1,2
=7 x 7t de, =0,1,2,...
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Diffusionsgleichung Eigenschaften der Lésung

Die Bemerkungen zur Konvergenz der Reihe gelten wie bei
Dirichlet-Randbedingungen.

Satz 36.6 (Eigenschaften der Lésung)

Die Lésung u(x,t) der Diffusionsgleichung zu quadrat-integrierbarer
Anfangsbedingung u(0,t) = f(x) und homogenen Neumann-Randbedingungen ist
im Streifen [0, L] x (0,00) beliebig oft stetig partiell differenzierbar. Es gilt

t—00

1 L
lim u(x,t) = % = ZJ f(z)dx fir alle x € [0, L].
0

(Temperaturausgleich entlang des Stabes der Linge L auf den Mittelwert der
Anfangstemperatur.)
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Diffusionsgleichung Eigenschaften der Lésung
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Diffusionsgleichung Parabolisches Maximumprinzip

Wie die Laplace-Gleichung erfiillt auch die Diffusionsgleichung ein
Maximumprinzip.
Notation: Fiir ein Gebiet M < R™ und T > 0 definieren wir

e My :=M x (0,T) den RAUM-ZEIT-ZYLINDER

e I':=(0M x [0,T]) U (M x {0}) den PARABOLISCHEN RAND

Satz 36.7 (Parabolisches Maximumprinzip)

Sei M < R™ ein beschranktes Gebiet und sei u eine auf My zweimal stetig
differenzierbare und auf M1 stetige Funktion, die die Diffusionsgleichung

ou—cAu=0 in My

erfiillt. Dann nimmt u sein Maximum auf dem parabolischen Rand T" an.
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Diffusionsgleichung
Wie konnen inhomogene Randbedingungen realisiert werden?

Antwort: Mit Hilfe der allgemeinen Grundldsungen s und 1y in ??. Dabei
verwenden wir nur die beschrankten Grundldsungen mit s > 0.
Zunichst werden Dirichlet-Randbedingungen behandelt:

Satz 36.8
(i) Falls die Funktion h die Darstellung als Parameterintegral

h(t) = L B(s)sin(v/sL)e " ds,

mit einer stetigen und beschrankten Funktion B besitzt, so ist

ugr(z,t) = f B(s)sin(v/sz)e™¢ ! ds

0

eine Lésung der Diffusionsgleichung zu den Randwerten

u(0,t) =0, wu(L,t)=h(t), t > 0.

Inhomogene Randbedingungen
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Diffusionsgleichung Inhomogene Randbedingungen
(ii) Falls die Funktion g die Darstellung als Parameterintegral

0
g(t) = f A(s) sin(\/EL)e*C{zSt ds,
0
mit einer stetigen und beschrinkten Funktion A besitzt, so ist
” 2
ur(z,t) = f A(s)sin(v/s(L — z))e™ *t ds
0

eine Losung der Diffusionsgleichung zu den Randwerten

u(0,t) = g(t), u(L,t) =0, t > 0.

Bemerkung:

o Ersetzt man jeweils sin durch cos, erhdlt man Lésungen mit inhomogenen
Neumann-Randbedingungen.

@ Statt des Parameterintegrals kann auch eine endliche Summe oder unendliche
Reihe solcher Grundldsungen vorliegen.
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Diffusionsgleichung Diffusionsgleichung mit inhomogenen Randbedingungen

Zusammensetzen der Lésung (Superposition):

Satz 36.9 (Diffusionsgleichung mit inhomogenen Randbedingungen)
Die Diffusionsgleichung mit der Anfangsbedingung u(x,0) = f(x) und
inhomogenen Randbedingungen
Ro(u;t) au(0,t) + Buz(0,t) = g(2),
Rp(u;t) = ~u(L,t) + ouy(L,t) = h(t)

wird wie folgt gelbst:

1. Bestimme eine Lésung ugr der Diffusionsgleichung zu den Randwerten Ro(u;t) = 0,
Ry (u;t) = h(t). (ohne Anfangsbedingung)

2. Bestimme eine Ldsung uy, der Diffusionsgleichung zu den Randwerten Ro(u;t) = g(t),
Ry, (u;t) = 0. (ohne Anfangsbedingung)

3. Bestimme die (eindeutige) Lésung uwa der Anfangs-Randwertaufgabe zu den homogenen
Randwerten Ro(u;t) = Rp,(u;t) = 0 und der Anfangsbedingung

u(z,0) = f(z) — ur(z,0) —ur(z,0).

Die Gesamtlosung ist dann uw = us + ug + ur,.
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Randbed

Diffusionsgleichung Diffusi leichung mit inh

Zur Durchfiihrung des 1. Schrittes (inhomogene RB am rechten Rand) ist es
erforderlich, die Funktion h(t) als Parameterintegral

0
h(t) = | B(s)sin(vsL) e ds
0 Y———
=:F(s)

darzustellen. Dieses Integral beschreibt die Laplace-Transformation einer
gesuchten Funktion F'(s) = B(s)sin(+/sL).
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Wellengleichung

Kapitel 37 — Wellengleichung
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Wellengleichung Wellengleichung

Die Wellengleichung

Definition 37.1 (Wellengleichung)

Gegeben sei ein Gebiet M < R™ und ¢ > 0. Sei u : M x (0, 00) eine (geniigend oft
differenzierbare) Funktion des Ortes & € M sowie der Zeit t € (0,00). Wir bilden
die partiellen Ableitungen u;, uy nach der Zeitvariablen und Aw nach der
Ortsvariablen.

u erfiillt die WELLENGLEICHUNG (engl. wave equation), wenn gilt
ug (%, t) — Au(Z,t) = 0 fiir alle e M, te (0,0).

Hierdurch wird oft die Ausbreitung von Wellen in der Akustik, Elektrotechnik etc.
modelliert., z.B. schwingende Saiten eines Instruments oder eine schwingende
Membran.

Im Folgenden wird der Fall n = 1, also & = x € R exemplarisch behandelt.

Zwei Fille:
o M = R, also keine Rander
e M = (0, L), zusatzliche Randbedingungen in x =0 und 2 = L
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Wellengleichung Cauchyproblem

Satz 37.2 (Allgemeine Lésung im Ganzraum)
Die allgemeine Losung der Wellengleichung

utt—02um=0, rzeR, t>0

hat die Form
u(z,t) = hi(z + ct) + hao(z — ct)

mit zweimal differenzierbaren reellen Funktionen hy und hs.
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Wellengleichung Cauchyproblem der Wellengleichung

Satz 37.3 (Losung der Wellengleichung im Ganzraum)
Das Cauchyproblem
Upp = czum, rzeR, t>0
u(z,0) = fi(z),  w(z,0) = fa(z)
hat die (eindeutige) Lésung
1 1 T+ct
u(et) =5 (e +e) + hle—c)+ o [ plde
=@
Die obige Darstellung der Losung heiBt D’ ALEMBERT’SCHE FORMEL.

A
Der Wert der Ldsung u im Punkt (z,t)
(z,1) hangt ab
£ (1) von den Werten der Funktion f1 in
den Punkten z + ct

(2) von der Werten der Funktion fs im

1 ‘ Y Intervall [z — ct, x + ct].

B = @ T T +ct
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Wellengleichung Cauchyproblem der Wellengleichung

Bemerkungen:
o Die Losung u(x,t) der Wellengleichung hat fiir ¢ > 0 keine hohere
“Glattheit” als die 1. Anfangsbedingung: Hat f; einen Sprung bei x1, so hat
u(x,t) (fir festes t) im allgemeinen zwei Spriinge bei 21 + ¢t und z1 — ct.

@ Spriinge in der 2. Anfangsbedingung f> liefern i.a. noch stetige Lésungen:
Hat fo einen Sprung bei x5, so entsteht durch die Integration eine stetige
Funktion, die an den Stellen x5 + ¢t nicht differenzierbar ist (“Kanten” in

u(z,t)).

e Wachstum von u(z,t):
o Im Fall fo =0 ist |u(z,t)| < ||fi]e fir alle t > 0.

o Im allgemeinen Fall gilt
lu(@,t)] < [fillo +tlfollo,  O<t<2L/e

D.h. die Welle kann mit wachsender Zeit 0 < t < 2L/c linear anschwellen.
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Wellengleichung Anfangs-Randwertproblem zur Wellengleichung

37.4 (Anfangs-Randwertproblem zur Wellengleichung in 1D)
Sei M = (0, L) ein beschranktes Intervall im R. Gesucht ist eine Funktion u, die die
Wellengleichung

Ust — gy =0 in (0, L) x (0, 00) (mit ¢ > 0),

sowie eine der beiden Anfangs-Randbedingungen erfiillt:

u(z,0) = fi1(z), z € (0,L), (1. Anfangsbedingung)

ut(z,0) = fo(z), x € (0,L), (2. Anfangsbedingung)

u(0,1) = g(t) - -

(L) = h(t) t>0, (Dirichlet-Randbedingung)
oder

u(z,0) = f1(z), z € (0,L), (1. Anfangsbedingung)

ue(z,0) = fa(x), z € (0,L), (2. Anfangsbedingung)

wa(0,1) = 9(t) .

wa (L, 1) = h(t) t>0. (Neumann-Randbedingung)
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Wellengleichung Grund|& der Well ng in [0, L] x [0, o0)

Man erhilt ganz analog zur Diffusionsgleichung die folgenden Losungen der
Wellengleichung (ohne Beriicksichtigung von Anfangs- und Randbedingungen):

Satz 37.5 (Grundldsungen der Wellengleichung)

Es sei € R, s = +/|u|/c. Dann Iésen die Funktionen

Ps(z,t) = c1cos(sx)cos(sct) + cz cos (sz) sin (sct) +
c3 sin (sx) cos (sct) + c4 sin (sz) sin (sct)
= Cicos(s(z + ct)) + Cosin (s(x + ct))
+Cj5cos (s(z — ct)) + Cysin (s(x — ct))  fiir p <0,
po(x,t) = c1+ cox + cat + caxt

Ci + Cx(z +ct) + C3(z — ct) + Caf(z + ct)® — (x — ct)?] fiir p=0

sowie
¢s($,t) _ Cles(a:+ct) + Cge—s(x-%—ct) + CSes(x—ct) + C4e—s(x—ct) fiir w> 0

die Wellengleichung uy; — c?ugs = 0.
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Wellengleichung Dirichlet-Randbedingungen
Durch Uberlagerung der periodischen beschrankten Grundlésungen erhalt man

Satz 37.6 (Lésung zum ARWP mit homogene Dirichlet-Randbedingungen)

Die Funktionen fi und fo werden ungerade fortgesetzt und in eine Sinusreihe
entwickelt:
(e'0]
krx kmc
fi(z) = aj, sin —— und 2 by, sin ——
k=1 -

Dann ist die Lésung des Anfangsrandwertproblems mit homogenen
Dirichlet-Randbedingungen gegeben durch

Z (a cos t +b i sin kﬁd) sin Im—x
k ¥ ke L L
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Wellengleichung Lésung zum ARWP mit h N Randbedii

Analoge Formeln fiir die Neumann-Randbedingungen erhilt man aus:

Satz 37.7 (Lésung zum ARWP mit homogene Neumann-Randbedingungen)

Die Grundlésungen der Wellengleichung mit homogenen
Neumann-Randbedingungen sind

’Q/J()(.’L',t) = c1 + cof,

sowie

kmx kmct . ([ kmct
Y (z,t) = cos (L) <01 oS < T ) +0251n( T )) , k=1,23,...

Die Anfangsbedingungen u(z,0) = fi(x), ut(z,0) = fa(z) werden durch
Uberlagerung mit den Koeffizienten der Cosinus-Reihen von f; und f; gebildet;
hier miissen die Funktionen also gerade fortgesetzt werden zur Periodenldnge 2L.
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Distributionen

Kapitel 38 — Distributionen
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Distributionen Bezeichnungen

Bezeichnungen

Definition 38.1
Sei K < R"™ kompakt, Q) = R"™ offen.
o der TRAGER einer Funktion (englisch "support”) ist definiert durch

suppyp = {Z € R" | ¢(Z) # 0}
o C.(0) ist der Raum aller stetigen Funktionen ¢ : Q — C mit kompaktem

Trager.

o C®(0) ist der Raum aller Funktionen ¢ : Q@ — C, die unendlich oft
differenzierbar sind.

@ der Raum der TESTFUNKTIONEN st

D(Q) 1= CP(Q) 1= CP(Q) N C(Q).
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Distributionen Motivation

Motivation

Die FUNDAMENTALLOSUNG ® : R™\{0} — R mit n > 2 ist definiert durch

— 2 In(|Z]) flirn =2
) — 2w )
(@) = {f Z~(=2  fiirn > 3.
n(n—2)wy, =
Wissen schon (aus der Ubung):
2 1 & 1 _ __1 &
° Vo) = —ml W = Bl
o —Ad =0.

Frage: Lasst sich —A® auf ganz R"™ interpretieren?

Antwort: Betrachte dazu ¥ € D(R"™). Dann gilt

lim Vo - VU di = 9(0).
e—0 R"\ B,

In diesem Sinne:
—Ad = (50 mit (50(‘1’) = \I/(O)
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Distributionen Distributionen

Definition 38.2 (Distributionen)

Eine DISTRIBUTION auf () ist eine lineare Abbildung von D() nach C, die
zusatzliche Stetigkeitseigenschaften besitzt.

Die Menge der Distributionen auf Q wird mit D'(Q) bezeichnet.

Genauer: Eine lineare Abbildung u : D(Q2) — C erfiillt die obige
Stetigkeitseigenschaft, wenn zu jeder kompakten Menge K < Q ein ¢ = ¢(K) > 0
und ein m = m(K) € Ny existieren, so dass:

[u(@)] < cllelem @

fiir alle o € D(2) mit supp ¢ < K.

38.3 (Beispiele)
@ Jo : D(R™) — R mit dp(¢) = ¢(0).
e ¢; : D(R") — R mit e;(p) = 0;(0) firj=1,...,n.
e Sei f: R™ — R lokal integrierbar, d.h. f € L1 (K) fiir jede kompakte Menge
K < R™. Dann ist {f) mit {f)(p) := SRn fo d¥ eine Distribution.
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Distributionen Differentiation von Distributionen

Voriiberlegung: Sei f € C'(R") so, dass f und 0; f absolut integrierbar sind und

Plp) =] [fedl.
R

Dann gilt mit partieller Integration

@i (e fafsodw— Jffwdw——@( 25).

Definition 38.4
Ist u € D'(Q) eine Distribution und ¢ € D(Q)) eine Testfunktion, so definiert man

(G5u) () := —u(0;f).

Konsequenz: in diesem Sinn sind Distributionen beliebig oft differenzierbar. Die
partiellen Ableitungen sind stets vertauschbar.
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Distributionen Konvergenz von Distributionen

Definition 38.5 (Konvergenz von Distributionen)

Eine Folge von Distributionen uy, in D'()) konvergiert gegen eine Distribution
u € D'(Q), wenn fiir alle Testfunktionen ¢ € D(Q) gilt:

ug(p) = u(p) fir k — oo.

Wie schreiben dann uy — u in D'(Q).

Beispiele:
1) Sei ay, eine Folge in R™ mit a; — a € R™. Dann gilt d,, — 04 in D'(R™).
2) Es gelte ar, — a in R. Sei H,, die verschobene Heaviside-Funktion gegeben
durch H,, (z) := H(z — ay). Dann gilt
(Hy,) — {H,y in D'(R).

3) Seien fi, f: R™ — R absolut integrierbar mit §,,, | fx — f|dZ — 0 fiir
k — oo0. Dann gilt

iy =< in D'(R™).
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Distributionen Dirac-Folge, Dirac-Familie

Definition 38.6 (Dirac-Folge)

Eine Folge (Y )ren absolut integrierbarer Funktionen 1y, : R™ — R heiBt
DIRAC-FOLGE, wen fiir alle k € N gilt

1) i (Z) = 0 fiir alle ¥ € R,
2) fpn ¥u(@)dZ =1,

3) Fiir alle § > 0 ist lim (%) dZ =0
k—0o0 R™\Bs

Fiir Dirac-Folgen gilt die folgende distributionelle Konvergenz.

Satz 38.7 (Distributionelle Konvergenz von Dirac-Folgen)

Fiir Dirac-Folgen vy, gilt
(hgy — &g in D' (R™).
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Distributionen Fundamentalldsung der Laplace-Gleichung

Zurlick zur FUNDAMENTALLOSUNG

O(7) := {_zifz In(|) fiir n = 2,

aoanE T firn =3,

Beachte: Der Wert @(6) spielt keine Rolle und kann beliebig gewdhlt werden, da

{0} eine Nullmenge ist.

Satz 38.8 (Lokale Integrierbarkeit)
Die Funktionen ® und V® sind lokal integrierbar auf R™.

Mit der Rechnung am Anfang des Kapitels folgt die folgende Losungseigenschaft
von ®.

Satz 38.9 (L&sungseigenschaft der Fundamentallésung)

Die Fundamentallésung ® lést die Poisson-Gleichung
—A(®) = do

im Distributionssinn auf R™. Man schreibt auch kurz —A® = dy.
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Distributionen Losung der Poisson-Gleichung auf R™

Mit Hilfe der Fundamentalldsung ® lassen sich Losungen der Poissongleichung als
Faltung darstellen.

Satz 38.10 (L&sungseigenschaft der Faltung)
Sei f € D(R™). Dann lést die Funktion

u(@) = (@ ))& = | S0~ )y

die Poissongleichung —Aw = f im Distributionssinn auf R™.

Bemerkung: Die Funktion wu ist unendlich oft differenzierbar.

Beweisidee (nur formal):

~dus(@) = s ([ s@eE-ag) = [ @)z - ) dj

f@) (=A8g®(§ — 7)) dy = 6z(f) = f().

R”
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Distributionen Losung der Poisson-Gleichung auf R™
Speziell im Fall n = 3 erhdlt man die folgende Darstellungsformel.
Satz 38.11 (L6sung der Poisson-Gleichung im R?)

Sei f € D(R?). Dann Iést die Funktion

(&) = — j e I

am Jge [ —

die Poisson-Gleichung —Au = f im R3.

Ausblick: Die Formel aus Satz ?7 ist nur im Ganzraum R? giiltig. Fiir
Randwertprobleme auf beschrinkten Gebieten nutzt man die Idee der
GREEN’SCHEN FUNKTION.

Dirichlet-Problem: Sei 2 — R? ein beschrinktes Gebiet. Gesucht ist eine Losung
des Problems

—Au=f inQQ,
u(@) =0 Zed

A. Lamacz-Keymling Héhere Mathematik IV Sommer 25 579



Distributionen Greensche Funktion

Greensche Funktion

Definition 38.12 (Green’sche Funktion)

Eine Funktion G : Q x Q@ — R heiBt GREEN’SCHE FUNKTION zZUM GEBIET (2,
falls

1) Fiir jedes & € Q2:

im Distributionssinn auf €).
2) Fiir alle & € 0:

G(Z,9) =0 fiir alle ij € Q.

Fiir einige Gebiete wie
o Kugeln
o Halbriume, also z.B. Q = R? x (0, )

kann die Green'sche Funktion explizit angegeben werden.
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Distributionen Greensche Funktion

Eine Green'sche Funktion erlaubt die Darstellung von Losungen von
Dirichlet-Problemen. Wir beschranken uns hier auf n = 3. Die Resultate bleiben
auch in anderen Dimensionen giiltig.

Satz 38.13 (Darstellungsformel fiir Dirichlet-Probleme)

Sei Q) = R3 ein beschrinktes Gebiet und G eine Green'sche Funktion fiir Q. Dann
|6st

u(#) = L G(E,§)f () di
das Dirichlet-Problem

—Au=f inQQ,
u(@) =0 Ze .

A. Lamacz-Keymling Héhere Mathematik IV Sommer 25 581



