



Prof. Dr. Ben Schweizer Maik Urban WINTERSEMESTER 2019/2020 24. Oktober 2019

Partielle Differentialgleichungen I

Blatt 3

Abgabe am 30. Oktober 2019 in der Vorlesung

Aufgabe 1.

Sei $\Omega := B_{1/2}(0) \subset \mathbb{R}^2$ und $u(x) := \log |\log |x||$. Zeigen Sie mit dieser Funktion:

- a) Es gibt keine stetige Einbettung $H^1(\Omega) \hookrightarrow L^{\infty}(\Omega)$.
- b) Es gibt keinen stetigen Punkt-Auswertungsoperator $S: H^1(\Omega) \to \mathbb{R}$, so dass S(u) = u(0) für $u \in C^1(\Omega) \cap H^1(\Omega)$.

Aufgabe 2 (Distributionell harmonische Funktionen I).

Eine integrierbare Funktion $u \colon \Omega \to \mathbb{R}$ in einem Gebiet Ω ist harmonisch im Distributionssinn, falls

$$\int_{\Omega} u\Delta\varphi = 0 \quad \text{ für alle } \varphi \in C_c^2(\Omega) .$$

Beweisen Sie, dass eine solche Funktion mit der Regularität $u \in C^2(\Omega)$ im klassischen Sinne harmonisch ist.

Sei $\Omega \subset \mathbb{R}^n$ Lipschitz-Gebiet und $u \in H^1(\Omega)$ harmonisch im Distributionssinn. Zeigen Sie mit einem Dichtheitsargument, dass u auch schwach harmonisch ist,

$$\int_{\Omega} \nabla u \cdot \nabla \varphi = 0 \quad \text{ für alle } \varphi \in H_0^1(\Omega).$$

Aufgabe 3 (Zusammensetzen von Sobolev-Funktionen).

Seien $\Omega_1, \Omega_2 \subset \mathbb{R}^n$ zwei offene, nichtleere, beschränkte und disjunkte Mengen mit Lipschitz-Rand. Außerdem sei $\Gamma := \overline{\Omega}_1 \cap \overline{\Omega}_2$ nichtleer und beschränkt. Für $j \in \{1, 2\}$ bezeichnen wir mit spur_j den Spuroperator spur_j: $W^{1,p}(\Omega_j) \to L^p(\Gamma)$, wobei $p \in [1, \infty)$. Seien $u_1 \in W^{1,p}(\Omega_1)$ und $u_2 \in W^{1,p}(\Omega_2)$ mit spur₁ $(u_1) = \text{spur}_2(u_2)$. Zeigen Sie: Die Funktion

$$u \coloneqq \begin{cases} u_1 & \text{in } \Omega_1 \\ u_2 & \text{in } \Omega_2 \end{cases}$$

ist ein Element von $W^{1,p}(\Omega_1 \cup \Omega_2)$. Geben Sie den distributionellen Gradienten von u an.

(Bitte wenden)

Aufgabe 4 (Der Spuroperator für stetige Funktionen).

Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Lipschitz-Gebiet und $u \in H^1(\Omega) \cap C^0(\overline{\Omega})$. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- a) Die Funktion u ist eine Element von $H_0^1(\Omega)$.
- b) Für alle $x \in \partial \Omega$ ist u(x) = 0.

Tipp: Sie dürfen folgendes Approximationsresultat ohne Beweis verwenden: Zu jedem $u \in H^1(\Omega) \cap C^0(\overline{\Omega})$ existiert eine Folge $(u_k)_k$ in $H^1(\Omega) \cap C^1(\Omega)$, so dass

$$||u_k - u||_{H^1(\Omega)} + ||u_k - u||_{L^{\infty}(\Omega)} \to 0$$
 für $k \to \infty$.