Blatt 10 20.12.21

Übungen zur Vorlesung

Partielle Differentialgleichungen

Wintersemester 2021/22

Prof. Dr. B. Schweizer

Aufgabe 1. [Helmholtz Zerlegung von $H^1_*(\Omega, \mathbb{R}^n)$] Sei $\Omega \subset \mathbb{R}^n$ beschränkt mit Lipschitz-Rand der Klasse C^2 . Wir betrachten Funktionen $u: \Omega \to \mathbb{R}^n$ mit verschwindender Normalenkomponente am Rand,

$$u \in H^1_*(\Omega, \mathbb{R}^n) := \left\{ u \in H^1(\Omega, \mathbb{R}^n) \middle| u \cdot \nu = 0 \text{ auf } \partial \Omega \right\}.$$

Zeigen Sie, dass sich jede Funktion $u \in H^1_*(\Omega, \mathbb{R}^n)$ zerlegen lässt in einen divergenzfreien Anteil und einen Gradienten: Für alle $u \in H^1_*(\Omega, \mathbb{R}^n)$ existieren $w, g \in H^1_*(\Omega, \mathbb{R}^n)$ mit u = w + g und

$$\nabla \cdot w = 0 \text{ in } \Omega, \qquad \exists \ \psi \in H^2(\Omega) : \ q = \nabla \psi.$$

Die Zerlegung ist eindeutig, es gilt also $H^1_*(\Omega) = W \oplus Z$ mit $L^2(\Omega)$ -orthogonalen Unterräumen.

Aufgabe 2. [Differenzenquotienten II] Sei $\Omega \subset \mathbb{R}^n$ beschränkt und offen und $\Omega' \subset\subset \Omega$ eine kompakt enthaltene offene Teilmenge. Für $x \in \Omega'$ und $h \in \mathbb{R}$ mit $0 < |h| < \frac{1}{2} \mathrm{dist}(\Omega', \partial\Omega)$ definieren wir den *i*-ten Differenzenquotienten der Größe h durch

$$D_i^h u(x) := \frac{u(x + he_i) - u(x)}{h},$$

und setzen $D^h u := (D_1^h u, \dots, D_n^h u)$. Für $p \in (1, \infty)$ und eine Funktion $u \in L^p(\Omega)$ gelte die Abschätzung

$$||D^h u||_{L^p(\Omega')} \le C_0$$

unabhängig von h. Zeigen Sie, dass dann $u|_{\Omega'} \in W^{1,p}(\Omega')$ gilt mit $\|\nabla u\|_{L^p(\Omega')} \leq C_0$.

Abgabe am 10.1.22