Blatt 7 29.11.21

Übungen zur Vorlesung

Partielle Differentialgleichungen

Wintersemester 2021/22

Prof. Dr. B. Schweizer

Aufgabe 1. [Variante der Poincaré-Abschätzung] Sei $\Omega \subset \mathbb{R}^n$ beschränkt und zusammenhängend mit Lipschitz-Rand. Zeigen Sie, dass es eine Konstante C > 0 gibt, so dass für alle $u \in H^1(\Omega)$ gilt

$$||u||_{H^1(\Omega)}^2 \le C \left(\int_{\Omega} |\nabla u|^2 + \left(\int_{\Omega} u \right)^2 \right).$$

Verwenden Sie dabei nicht die bereits gezeigten Poincaré-Ungleichungen, sondern führen Sie den Beweis direkt mit einem Widerspruchsargument.

Aufgabe 2. [Kompaktheit des Spur] Es sei Ω ein beschränktes Gebiet mit Lipschitz Rand und u_k eine Folge in $H^1(\Omega)$ mit $u_k \to u$ schwach in $H^1(\Omega)$. Zeigen Sie, dass dann spur $u_k \to \operatorname{spur} u$ stark in $L^2(\partial\Omega)$.

Aufgabe 3. [Poincaré mit Kontrolle in einem Punkt] Geben Sie eine Folge $u_k : B_1(0) \subset \mathbb{R}^2 \to \mathbb{R}$ stetiger Funktionen an mit $u_k(0) = 0$, so dass $\|\nabla u_k\|_{L^2(B_1)}$ beschränkt ist, aber $\|u_k\|_{L^2(B_1(0))} \to \infty$ gilt.

Aufgabe 4. [Zum Musterbeispiel] Wir betrachten auf dem beschränkten Gebiet $\Omega \subset \mathbb{R}^n$ eine Folge von Lösungen $u_k \in H_0^1(\Omega)$ der Gleichung

$$-\nabla \cdot (a_k(u_k) \nabla u_k) = f \quad \text{in } \Omega.$$

wobei $a_k \to a$ in $C^0(\mathbb{R})$ gilt und $0 < \lambda \le a_k(s) \le \Lambda < \infty$ für alle $s \in \mathbb{R}$ und alle k. Zeigen Sie: Es gibt eine Teilfolge $(u_{k_l})_l$ mit $u_{k_l} \to u$ in $H^1(\Omega)$ und $u_{k_l} \to u$ in $L^2(\Omega)$. Die Grenzfunktion $u \in H^1_0(\Omega)$ löst im schwachen Sinne

$$-\nabla \cdot (a(u)\nabla u) = f$$
 in Ω .