Blatt 8 14.12.15

Übungen zur Vorlesung

Partielle Differentialgleichungen

Wintersemester 2015/2016

Prof. Dr. B. Schweizer

Dipl. Math. Sven Badke

1) Differenzenquotienten

Sei $\Omega \subset \mathbb{R}^n$ beschränkt, $u \in L^1_{loc}(\Omega)$ und $\tilde{\Omega} \subset\subset \Omega$. Wir definieren für $x \in \tilde{\Omega}$ und $h \in \mathbb{R}$ mit $0 < |h| < \frac{1}{2} \mathrm{dist}(\tilde{\Omega}, \partial \Omega)$ den *i*-ten Differenzenquotienten der Größe h durch

$$D_i^h u(x) := \frac{u(x + he_i) - u(x)}{h},$$

und setzen $D^h u := (D_1^h u, \dots, D_n^h u)$. Seien nun $p \in [1, \infty)$ und $u \in W^{1,p}(\Omega)$. Zeigen Sie, dass zu $\tilde{\Omega} \subset\subset \Omega$ eine Konstante C existiert, so dass, unabhängig von h,

$$||D^h u||_{L^p(\tilde{\Omega})} \le C||Du||_{L^p(\Omega)}.$$

2) Eine Cacciopoli Ungleichung

Sei $\Omega \subset \mathbb{R}^n$ offen und $\Omega' \subset \overline{\Omega}' \subset \Omega$ eine kompakte Teilmenge. Zeigen Sie, dass es eine Konstante C>0 mit folgender Eigenschaft gibt: für jedes $f\in L^2(\Omega,\mathbb{R})$ und jede Lösung $u\in H^1(\Omega)$ von

$$-\Delta u = f$$
 in Ω

gilt die Abschätzung

$$\|\nabla u\|_{L^2(\Omega')}^2 \le C\left(\|u\|_{L^2(\Omega)}^2 + \|f\|_{L^2(\Omega)}^2\right).$$

Anleitung: Benutzen Sie eine Abschneidefunktion $\Theta \in C_c^{\infty}(\Omega, \mathbb{R})$ mit Werten in [0, 1] und $\Theta \equiv 1$ auf Ω' . Testen Sie die Gleichung mit der Funktion $\Theta^2(x)u(x)$.

3) Helmholtz Zerlegung von $H^1_*(\Omega, \mathbb{R}^n)$

Sei $\Omega \subset \mathbb{R}^n$ beschränkt mit Lipschitz-Rand der Klasse C^2 . Wir betrachten Funktionen $u:\Omega \to \mathbb{R}^n$ mit verschwindender Normalenkomponente am Rand,

$$u \in H^1_*(\Omega, \mathbb{R}^n) := \left\{ u \in H^1(\Omega, \mathbb{R}^n) \middle| u \cdot \nu = 0 \text{ auf } \partial \Omega \right\}.$$

Zeigen Sie, dass sich jede Funktion $u \in H^1_*(\Omega, \mathbb{R}^n)$ zerlegen lässt in einen divergenzfreien Anteil und einen Gradienten: Für alle $u \in H^1_*(\Omega, \mathbb{R}^n)$ existieren $w, g \in H^1_*(\Omega, \mathbb{R}^n)$ mit u = w + g und es gilt

$$\nabla \cdot w = 0 \text{ in } \Omega, \qquad \exists \ \psi \in H^2(\Omega) : \ q = \nabla \psi.$$

Die Zerlegung ist eindeutig und wir können entsprechend den Raum zerlegen als

$$H^1_*(\Omega) = W \oplus Z$$

in $L^2(\Omega)$ -orthogonale Unterräume. Anleitung: Konstruieren Sie ψ als Lösung einer Gleichung und verwenden, dass Lösungen des Neumann-Problems auf Ω in $H^2(\Omega)$ liegen.

Abgabe am 4.1.16 in der Vorlesung.