Blatt 2 26.10.15

Übungen zur Vorlesung

Partielle Differentialgleichungen

Wintersemester 2015/2016

Prof. Dr. B. Schweizer

Dipl. Math. Sven Badke

1) Distributionell harmonische Funktionen

Wir nennen eine integrierbare Funktion $u: \Omega \to \mathbb{R}$ in einem Gebiet Ω distributionell harmonisch (beziehungsweise subharmonisch), falls

$$\int_{\Omega} u \, \Delta \varphi = 0 \quad \text{ für alle } \varphi \in C_c^2(\Omega) \text{ mit } \varphi \ge 0$$

(beziehungsweise $\int_{\Omega} u \, \Delta \varphi \geq 0$).

Sei $\Omega \subset \mathbb{R}^n$ Lipschitz-Gebiet und $u \in H^1(\Omega)$ distributionell harmonisch. Zeigen Sie mit einem Dichtheitsargument, dass u auch schwach harmonisch ist,

$$\int_{\Omega} \nabla u \cdot \nabla \varphi = 0 \quad \forall \varphi \in H_0^1(\Omega) .$$

2) Vergleich von $C^0(\partial\Omega)$ und $H^{1/2}(\partial\Omega)$

Sei $\Omega := (0, 2\pi) \times (0, \infty) \subset \mathbb{R}^2$ mit Koordinaten $(x, y) \in \Omega$ und mit dem unteren Rand $\Sigma := (0, 2\pi) \times \{0\}$. Wir betrachten Randwerte $g : \Sigma \to \mathbb{R}$ in der Form einer Fourier-Reihe und eine Fortsetzung $u : \Omega \to \mathbb{R}$ der Randwerte, die formal eine harmonische Funktion beschreibt,

$$g(x) = \sum_{k \in \mathbb{N}} a_k \sin(kx), \qquad u(x,y) = \sum_{k \in \mathbb{N}} a_k \sin(kx)e^{-ky}.$$

Geben Sie ein Kriterium an die Koeffizienten $(a_k)_k$ an, welches sicherstellt, dass $u \in H^1(\Omega)$ erfüllt ist (in diesem Fall gilt $g \in H^{1/2}(\Sigma)$). Zeigen Sie, dass es eine Folge $(a_k)_k$ gibt, so dass g stetig ist, aber nicht von der Klasse $H^{1/2}(\Sigma)$.

3) Lösungsbegriffe

Zeigen Sie für beschränkte Gebiete $\Omega \subset \mathbb{R}^n$ und die Gleichung $\Delta u = f$ die Implikationen: u klassische Lösung $\Rightarrow u$ starke Lösung $\Rightarrow u$ schwache Lösung $\Rightarrow u$ distributionelle Lösung.

4) Lemma ohne Namen

Sei X ein metrischer Raum, eine Folge $(x_k)_{k\in\mathbb{N}}$ und ein Punkt $x\in X$ seien gegeben. Es gelte die folgende Eigenschaft: Zu jeder Teilfolge $(x_{k_l})_{l\in\mathbb{N}}$ existiert eine weitere Teilfolge $(x_{k_l})_{i\in\mathbb{N}}$, so dass $x_{k_{l_i}}\to x$ für $i\to\infty$. Zeigen Sie: Dann gilt die Konvergenz der ganzen Folge $x_k\to x$ für $k\to\infty$.

Abgabe am 2.11.15 in der Vorlesung.