

Prof. Dr. B. Schweizer Nils Dabrock

Partielle Differentialgleichungen II Blatt 2

Abgabe am Donnerstag, den 19.04.2018, in der Vorlesung

Aufgabe 1 (Lumpensammleraufgabe).

- a) Wiederholen Sie den Beweis des Trennungssatzes.
- b) Sei K eine konvexe Teilmenge des \mathbb{R}^n und $f:K\to\mathbb{R}$ konvex. Zeigen Sie folgende Aussage:

Für Punkte $x_1, \ldots, x_m \in K$ und Zahlen $\tau_1, \ldots, \tau_m \in [0, 1]$ mit $\sum_{j=1}^m \tau_j = 1$ gilt:

$$f\left(\sum_{j=1}^{m} \tau_j x_j\right) \le \sum_{j=1}^{m} \tau_j f(x_j).$$

- c) Geben Sie eine stark abgeschlossene Menge an, die nicht schwach abgeschlossen ist.
- d) In der Vorlesung wurde im Beweis des Lemmas von Mazur die Menge

$$K := \left\{ \sum_{i=1}^{N} \mu_i x_i \mid N \in \mathbb{N} \text{ und } \mu_i \in [0,1] \text{ für } i \in \{1,\dots,N\} \text{ mit } \sum_{i=1}^{N} \mu_i = 1 \right\}$$

betrachtet. Zeigen Sie, dass K und \overline{K} konvex sind.

Aufgabe 2 (Jensen'sche Ungleichung).

Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Wir verwenden den Mittelwertoperator

$$\mathcal{M}(v) := \frac{1}{|\Omega|} \int_{\Omega} v = \int_{\Omega} v,$$

der jedem $v\in L^1(\Omega,\mathbb{R}^m)$ seinen Mittelwertvektor in \mathbb{R}^m zuordnet. Zeigen Sie folgende Jensen'sche Ungleichung:

Ist $f: \mathbb{R}^m \to \mathbb{R}$ konvex und $u \in L^1(\Omega, \mathbb{R}^m)$, so gilt:

$$f(\mathcal{M}(u)) \le \mathcal{M}(f(u))$$
.

Hinweis: Verwenden Sie die Stützebenen aus Aufgabe 1 auf dem Präsenzblatt. Hierbei dürfen Sie ohne Beweis verwenden, dass eine konvexe Funktion $f: \mathbb{R}^m \to \mathbb{R}$ stets stetig ist.

(Bitte wenden)

Aufgabe 3 (Projektionssatz).

Sei X Hilbertraum und $K\subset X$ nichtleer, konvex und abgeschlossen. Zeigen Sie mit der Direkten Methode der Variationsrechnung: Zu jedem $x\in X$ gibt es genau ein $z\in K$ mit

$$||x - z|| = \operatorname{dist}(x, K) := \inf_{y \in K} ||x - y||.$$

Aufgabe 4 (Kompaktheit der Spur).

Sei $\Omega\subset\mathbb{R}^n$ ein beschränktes Lipschitz-Gebiet. Zeigen Sie, dass für den Spuroperator spur gilt:

spur : $H^1(\Omega) \to L^2(\partial \Omega)$ ist kompakt.

Anleitung: Es genügt zu zeigen, dass $u_k \to u$ in $H^1(\Omega)$ die Konvergenz spur $u_k \to s$ pur u in $L^2(\partial\Omega)$ impliziert. Dabei kann man sich ohne Einschränkung auf u=0 beschränken. Die Aussage spur $u_k \to 0$ in $L^2(\partial\Omega)$ wird auf den einzelnen Zylindergebieten einer Überdeckung des Randes wie in der Definition von Lipschitz-Gebieten gezeigt. Verwenden Sie dabei die Definition der Spur, die Gleichung $|spur u_k|^2 = spur|u_k|^2$ sowie die Rellich-Einbettung.