

fakultät für mathematik

Prof. Dr. B. Schweizer Nils Dabrock SOMMERSEMESTER 2018 14.06.2018

Partielle Differentialgleichungen II Blatt 10

Abgabe am Donnerstag, den 21.06.2018, in der Vorlesung

Aufgabe 1 (Einfache Gronwall-Ungleichung).

Zeigen Sie: Gilt für eine Funktion $y \in L^1(0,T;\mathbb{R})$ die Integralungleichung

$$y(t) \le y_0 + C \int_0^t y(s) \, ds \qquad \forall t \in [0, T], \tag{1}$$

für reelle Zahlen $y_0, C \ge 0$, so gilt auch

$$y(t) \leq y_0 e^{Ct}$$
.

Anleitung: Betrachten Sie die Funktion $w(t) := e^{-Ct} \int_0^t y(s) ds$. Verifizieren Sie für die (schwache) Ableitung von w die Ungleichung $w'(t) \leq y_0 e^{Ct}$. Schließen Sie die Aussage durch eine Integration und nochmalige Verwendung von (1).

Aufgabe 2 (Gewöhnliche Differentialgleichung mit Inhomogenität in L^p).

Wir betrachten im Raum $X = \mathbb{R}^N$ die Differentialgleichung

$$\partial_t y(t) = f(y(t), t) + g(t) \quad \text{für} \quad t \in [0, T], \quad y(0) = y_0.$$
 (2)

Hierbei sind gegeben: T > 0, $y_0 \in X$, $f: X \times [0,T] \to X$ Lipschitz-stetig im ersten Argument und stetig im zweiten Argument, die Inhomogenität $g \in L^p(0,T;X)$ für ein $p \in [1,\infty)$. Zeigen Sie, dass es eine eindeutige Lösung $y \in W^{1,p}(0,T;X)$ gibt, so dass die Differentialgleichung für fast alle $t \in [0,T]$ erfüllt ist und die Anfangsbedingung im Spursinn.

Anleitung: Definieren Sie $G \in W^{1,p}(0,T;X)$ durch $G(t) := \int_0^t g(s) \, ds$. Lösen Sie die Gleichung $\partial_t z(t) = f(z(t) + G(t), t)$ zu $z(0) = y_0$ mit dem klassischen Satz von Picard-Lindelöf nach z (hier nutzen Sie aus, dass G stetig ist). Setzen Sie y = G + z.

Aufgabe 3 (Monotonie des Subdifferentials).

Es sei X ein Banachraum und $F: X \to \mathbb{R}$ konvex. Zeigen Sie, dass das Subdifferential $\partial F: X \to \mathcal{P}(X')$ monoton ist, d.h.

$$\langle \varphi - \psi, u - v \rangle \ge 0 \quad \forall u, v \in X, \varphi \in \partial F(u), \psi \in \partial F(v).$$