Kontinuumsmechanik Blatt 6

Abgabe bis zum 28.10.2018 beim Übungsleiter

Aufgabe 1 (Konvexität).

Zeigen Sie, dass für eine stetige Funktion $f: \mathbb{R} \to \mathbb{R}$ folgende Aussagen äquivalent sind:

- (i) Die Funktion f ist konvex.
- (ii) Für alle $x, y \in \mathbb{R}$ gilt:

$$f\left(\frac{x+y}{2}\right) \le \frac{1}{2} \left(f(x) + f(y)\right).$$

Hinweis: Um die Aussage (ii) \Rightarrow (i) zu zeigen, nehmen Sie zunächst an, dass f zweimal stetig differenzierbar ist.

Aufgabe 2 (Konvexe Analysis).

Seien X,Y Banachräume und $\hat{\mathbb{R}} = \mathbb{R} \cup \{+\infty\}$. Wiederholen Sie die folgenden Begriffe aus der konvexen Analysis:

- (i) Konvexität einer Menge $K \subset X$ und einer Funktion $F: K \to Y$ oder $\hat{\mathbb{R}}$.
- (ii) Fenchel-Konjugierte $F^*: X' \to \hat{\mathbb{R}}$ einer Funktion $F: X \to \hat{\mathbb{R}}$.
- (iii) Subdifferential ∂F einer konvexen Funktion $F:X\to \hat{\mathbb{R}}.$

Sei nun X reflexiv und $F: X \to \hat{\mathbb{R}}$.

- (i) Zeigen Sie, dass $F^{**} \leq F$.
- (ii) Beweisen Sie die Fenchel-Relationen: Für $u \in X$ und $u^* \in X'$ gilt

$$F(u) + F^*(u^*) = \langle u^*, u \rangle \iff u^* \in \partial F(u)$$

$$\Rightarrow u \in \partial F^*(u^*) \implies u^* \in \partial F^{**}(u).$$

(Bitte wenden)

Aufgabe 3 (Zeitschrittverfahren für eine Differentialinklusion).

Wir betrachten die gewöhnliche Differentialgleichung [Buch, Gleichung (15.15), Seite 291]. Gegeben seien Zeitpunkte $0 = t_0 < t_1 < \ldots < t_N = T$ und ein Startwert $u_0 \in \mathbb{R}^n$. Zeigen Sie, dass das Verfahren

$$\frac{u_k - u_{k-1}}{t_k - t_{k-1}} \in \partial \chi (Y(t_k) - u_k)$$

eine Lösung (u_1, \ldots, u_N) besitzt. Überlegen Sie sich die geometrische Bedeutung des Verfahrens in dem Fall, dass χ die Indikatorfunktion einer konvexen Menge $B \subset \mathbb{R}^n$ ist.

Anleitung: Betrachten Sie zu einem vorgegebenem Wert u_{k-1} das Funktional

$$A \colon \mathbb{R}^n \to \hat{\mathbb{R}}, \quad A(u) := \frac{1}{2(t_k - t_{k-1})} \|u - u_{k-1}\|^2 + \chi(Y(t_k) - u).$$

Stellen Sie fest, dass A ein Minimum $u=u_k\in\mathbb{R}^n$ besitzt. Schließen Sie aus $0\in\partial A(u_k)$ die Lösungseigenschaft.