Übungen zur Vorlesung

Höhere Mathematik II (P, ETIT, AI, DS)

Sommersemester 2023

Prof. Dr. B. Schweizer

Tim Schubert

In jeder Aufgabe sind maximal 10 Punkte zu erreichen.

Die Aufgaben 5.1, 5.2 und 5.3 sind schriftlich zu bearbeiten.

Aufgabe 5.1. [Rechenregeln zur Integration] Es sei F'(x) = f(x). Zeigen Sie folgende Rechenregeln für das unbestimmte Integral:

a)
$$\int f(c+x) dx = F(c+x)$$
, b) $\int f(c-x) dx = -F(c-x)$,

c)
$$\int f(-x) dx = -F(-x), \qquad d) \qquad \int f(\alpha x) dx = \frac{1}{\alpha} F(\alpha x),$$

c)
$$\int f(-x) dx = -F(-x), \qquad d$$

$$\int f(\alpha x) dx = \frac{1}{\alpha} F(\alpha x),$$
 e)
$$\int \frac{g'(x)}{g(x)} dx = \ln(|g(x)|), \qquad f$$

$$\int g(x)g'(x) dx = \frac{1}{2}g(x)^{2}.$$

Aufgabe 5.2. [Unbestimmtes Integral einer rationalen Funktion] Es seien $a, b, c, d \in \mathbb{R}$ mit c, d > 0 und $c^2 < 4d$.

a) Berechnen Sie das unbestimmte Integral

$$\int \frac{1}{x^2 + cx + d} \, \mathrm{d}x \, .$$

Hinweis: Berechnen Sie für $\alpha, \beta \in \mathbb{R}$ mit $\alpha, \beta > 0$ die Ableitung der Funktion

$$F: \mathbb{R} \to \mathbb{R}, \ x \mapsto \arctan(\alpha x + \beta)$$
.

b) Berechnen Sie das unbestimmte Integral

$$\int \frac{ax+b}{x^2+cx+d} \, \mathrm{d}x \, .$$

Aufgabe 5.3. [Integralrechnung] Berechnen Sie folgende Integrale:

a)
$$\int_{-1}^{2} x\sqrt{x^{2} + 5} \, dx,$$
 b)
$$\int_{0}^{1} \frac{\exp(2x) + \exp(4x)}{\exp(4x) + 9} \, dx,$$

c)
$$\int_{-3}^{3} \sqrt{9 - x^{2}} \, dx,$$
 d)
$$\int_{0}^{x} \frac{t^{3}}{t^{8} + t^{4} + 1} \, dt.$$

e)
$$\int_{-3}^{3} \sqrt{9 - x^2} \, dx$$
, d) $\int_{0}^{x} \frac{t^3}{t^8 + t^4 + 1} \, dt$

Aufgabe 5.4. [Flächeninhalte] Es seien $a, b \in \mathbb{R}$ mit a, b > 0. Berechnen Sie den Flächeninhalt der Ellipse

$$E := \left\{ (x, y) \in \mathbb{R}^2 \mid \frac{x^2}{a^2} + \frac{y^2}{b^2} \le 1 \right\}.$$

Abgabe am 10.05.2023 bis 14:00 Uhr online.