

fakultät für mathematik

Prof. Dr. B. Schweizer Dr. M. Kniely

WINTERSEMESTER 2020/21 14.01.2021

Festkörpermechanik Blatt 7

Abgabe bis Donnerstag, den 21.01.2021, um 12:00

Aufgabe 1 (Konvexe Funktionen).

Sei $f: \mathbb{R} \to \mathbb{R}$ stetig. Zeigen Sie, dass folgende Aussagen äquivalent sind:

- i) f ist konvex.
- ii) Für alle $x, y \in \mathbb{R}$ gilt

$$f\left(\frac{x+y}{2}\right) \le \frac{1}{2}f(x) + \frac{1}{2}f(y).$$

Hinweis: Um die Aussage ii) \Rightarrow i) zu zeigen, nehmen Sie zunächst an, dass f zweimal stetig differenzierbar ist.

Aufgabe 2 (Konvexe Analysis).

Bestimmen Sie für die Funktionen $F, G, H: \mathbb{R}^n \to \mathbb{R}$,

$$F(x) \coloneqq \langle c, x \rangle - b \text{ mit } c \in \mathbb{R}^n, \ b \in \mathbb{R}, \quad G(x) \coloneqq \|x\|, \quad H(x) \coloneqq \frac{1}{2} \|x\|^2$$

die Fenchel-Transformierten $F^*,G^*,H^*:\mathbb{R}^n\to\mathbb{R}$ und vergewissern Sie sich, dass für diese Funktionen die Fenchel-Relationen gelten:

$$y \in \partial A(x) \quad \Leftrightarrow \quad A(x) + A^*(y) = \langle y, x \rangle \quad \Leftrightarrow \quad x \in \partial A^*(y).$$

Aufgabe 3 (Zeitschrittverfahren für eine Differentialinklusion).

Gegeben seien Zeitpunkte $0 = t_0 < t_1 < \ldots < t_N = T$, Funktionswerte $Y(t_k) \in \mathbb{R}^n$ und ein Startwert $u_0 \in \mathbb{R}^n$. Zeigen Sie, dass das iterative Verfahren

$$\frac{u_k - u_{k-1}}{t_k - t_{k-1}} \in \partial \chi(Y(t_k) - u_k)$$

eine eindeutige Lösung (u_1, \ldots, u_N) liefert, falls $\chi : \mathbb{R}^n \to \hat{\mathbb{R}}$ konvex und unterhalbstetig ist. Überlegen Sie sich die geometrische Bedeutung des Verfahrens in dem Fall, dass χ die Indikatorfunktion einer nicht leeren, abgeschlossenen, konvexen Menge $K \subset \mathbb{R}^n$ ist.

Hinweis: Betrachten Sie zum vorgegebenen Wert u_{k-1} das Funktional $A: \mathbb{R}^n \to \hat{\mathbb{R}}$,

$$A(u) := \frac{1}{2(t_k - t_{k-1})} \|u - u_{k-1}\|^2 + \chi(Y(t_k) - u).$$

Stellen Sie fest, dass A ein eindeutiges Minimum $u=u_k\in\mathbb{R}^n$ besitzt. Schließen Sie aus $0\in\partial A(u_k)$ die Lösungseigenschaft.