Einführung in die Partiellen Differentialgleichungen Blatt 9

Abgabe bis Montag, 14. Juni 2021, 14:00 Uhr

Aufgabe 1 (Das Spektrum des Dirichlet-Problems auf Quadern). (10 Punkte)

Für einen Vektor $a \in \mathbb{R}^n_+$ von (halben) Kantenlängen bezeichne $Q_a := \{x \in \mathbb{R}^n : |x_j| < a_j\}$ den zugehörigen Quader mit Mittelpunkt 0.

- a) Berechnen Sie das Spektrum $\sigma = \sigma_a \subset \mathbb{R}$ des Operators $-\Delta : H_0^1(Q_a) \to H^{-1}(Q_a)$. Hinweis: Es gilt $\lambda \in \sigma$ genau dann, wenn es ein nichttriviales $u \in H_0^1(Q_a)$ gibt mit $-\Delta u = \lambda u$. Solche Lösungen können mit Sinus- und Cosinus-Funktionen in jeder Koordinatenrichtung gefunden werden.
- b) Das Spektrum σ_a sei geordnet, $\sigma_a = \{\lambda_m(a) | m \in \mathbb{N}_0\}$ mit $\lambda_m(a) \leq \lambda_{m+1}$ für alle $m \in \mathbb{N}_0$. Beweisen Sie für jedes $m \in \mathbb{N}$:

$$a \neq \tilde{a}, \ a_j \leq \tilde{a}_j \ \forall j = 1, \dots, n \quad \Rightarrow \quad \lambda_m(a) > \lambda_m(\tilde{a}).$$

c) Leiten Sie die folgende Abschätzung für die Dichte des Spektrums ab:

$$\forall \lambda \in (\lambda_0(a), \infty) : \operatorname{dist}(\lambda, \sigma_a) \le \left[\sqrt{\lambda} \frac{\pi}{a_{j_0}} + \frac{\pi^2}{(2a_{j_0})^2} \right]$$

wobei $a_{j_0} := \min_j a_j$ die kürzeste Kantenlänge ist.

Folgern Sie aus c) die Grenzbeziehung $\lim_{R\to\infty} \sigma_{R\cdot a} = [0,\infty)$ in dem Sinn, dass jede Zahl $\mu\in[0,\infty)$ für $R\to\infty$ durch Eigenwerte in $\sigma_{R\cdot a}$ approximiert werden kann.

Aufgabe 2 (Gegenbeispiel zu C^0 -Regularität).

(10 Punkte)

Seien die Funktionen $P: \mathbb{R}^2 \to \mathbb{R}, (x_1, x_2) \mapsto x_1 x_2$ und $\eta: \mathbb{R}^2 \to \mathbb{R}, \eta \in C_c^{\infty}(B_2(0))$ mit $\eta \equiv 1$ für $|x| \leq 1$, sowie die Folgen $c_k := \frac{1}{k}, t_k := 2^k, k \in \mathbb{N}_+$ gegeben. Zeigen Sie: Die Funktion

$$f: \mathbb{R}^2 \to \mathbb{R}, \ x \mapsto \sum_{k=1}^{\infty} c_k \Delta(\eta P)(t_k x)$$

ist stetig, aber die Gleichung $\Delta u=f$ besitzt keine in einer Nullumgebung zweimal stetig differenzierbare Lösung u.