Analysis I Blatt 9

Abgabe bis Montag, 16. Dezember 2019, 14:00 Uhr

Aufgabe 1 (Grenzwerte).

(4 Punkte)

Berechnen Sie folgende Grenzwerte:

(a)
$$\lim_{x \to 0} \sqrt{x} \log(x)$$

(b)
$$\lim_{x \to 0} x^x$$

(a)
$$\lim_{x \searrow 0} \sqrt{x} \log(x)$$
,
(c) $\lim_{x \nearrow 0} (1-x) \log(1-x^3)$,

(b)
$$\lim_{x \searrow 0} x^x$$
,
(d) $\lim_{n \to \infty} \sqrt[n]{n}$.

Aufgabe 2 (Stetigkeit).

(3 Punkte)

Untersuchen Sie, ob folgende Funktionen $f: \mathbb{R} \to \mathbb{R}$ stetig sind:

(a)
$$f(x) := \begin{cases} 0 & \text{für } x \le 0, \\ x \sin \frac{1}{x} & \text{sonst.} \end{cases}$$
 (b) $f(x) := \begin{cases} 0 & \text{für } x \le 0, \\ \sin \frac{1}{x} & \text{sonst.} \end{cases}$

(b)
$$f(x) := \begin{cases} 0 & \text{für } x \le 0\\ \sin \frac{1}{x} & \text{sonst.} \end{cases}$$

(c)
$$f(x) := \begin{cases} 1 & \text{für } x \le 0, \\ \cos\left(\frac{x}{1+x^2}\right) & \text{sonst.} \end{cases}$$

Aufgabe 3 (Punktw. und gleichmäßige Konvergenz). (2+2+3=7 Punkte)

Für $n \geq 2$ definieren wir eine stetige Funktion $f_n : [0,1] \to \mathbb{R}$ durch

$$f_n(x) := \begin{cases} 1 - |nx - 1|, & \text{falls } 0 \le x \le \frac{2}{n} \\ 0, & \text{sonst.} \end{cases}$$

- (a) Zeichnen Sie die Funktionen f_n für kleine und für große $n \geq 2$, sodass das Konvergenzverhalten sichtbar wird.
- (b) Zeigen Sie: f_n konvergiert punktweise gegen 0, d.h. für alle $x \in [0,1]$ gilt $f_n(x) \to 0 \text{ für } n \to \infty.$
- (c) Konvergiert f_n auch gleichmäßig gegen 0?

Aufgabe 4 (Grenzwert unstetig).

(3 Punkte)

Finden Sie ein Beispiel für eine Folge stetiger Funktionen, die punktweise gegen eine unstetige Funktion konvergieren.

Aufgabe 5 (Gleichmäßige Stetigkeit der Wurzelfunktion). (3 Punkte)

Zeigen Sie nur mithilfe der Definition: Die Funktion $f:[0,\infty)\to\mathbb{R},\ f(x)=\sqrt{x},$ ist gleichmäßig stetig.